Discovery of a new highly pathogenic toxin involved in insect sepsis

Author:

Zhang Yuan1,Li Hao1,Wang Fang2,Liu Chang2,Reddy Gadi V. P.3,Li Hu14,Li Zhihong14,Sun Yucheng5,Zhao Zihua14ORCID

Affiliation:

1. MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University , Beijing, China

2. Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences , Yinchuan, China

3. Department of Entomology, Lousiana State University , Baton Rouge, Los Angeles, USA

4. Sanya Institute of China Agricultural University, China Agricultural University , Sanya, China

5. Institute of Zoology, Chinese Academy of Sciences , Beijing, China

Abstract

ABSTRACT Insect sepsis is a severe consequence that arises from the invasion of the hemocoel by symbionts of entomopathogenic nematodes and bacteria. In the present study, we unveiled the heightened virulence of the entomopathogenic nematode Steinernema feltiae and the entomopathogenic bacteria Xenorhabdus bovienii , which operate symbiotically, against the wax moth Galleria mellonella . Maximum mortality was observed at 25°C while the optimal infestation efficiency was 20 nematodes per host. After infestation, G. mellonella displayed rapid darkening and softening, accompanied by an escalated esterase activity at 9 h. The X. bovienii , released by S. feltiae , underwent substantial proliferation and discharged toxins that attacked hemocytes, thus triggering extensive hemolysis and sepsis. The host G. mellonella was usually killed within 24 h due to disseminated septicemia. Additionally, X. bovienii infestation led to the upregulation of metabolites like 3-hydroxyanthranilic acid. Strikingly, we identified the perilous actinomycin D, generated through kynurenine metabolites, representing a novel biomarker of insect sepsis. Furthermore, a comprehensive transcriptomic analysis unveiled a noteworthy upregulation of gene expression associated with actinomycin D. Overall, X. bovienii induced apoptosis and sepsis through actinomycin D production, indicating its pivotal role in infestation activity. These findings open up new avenues for studying the mechanism of sepsis and developing innovative biotic pesticides. IMPORTANCE As a current biocontrol resource, entomopathogenic nematodes and their symbiotic bacterium can produce many toxin factors to trigger insect sepsis, having the potential to promote sustainable pest management. In this study, we found Steinernema feltiae and Xenorhabdus bovienii were highly virulent against the insects. After infective juvenile injection, Galleria mellonella quickly turned black and softened with increasing esterase activity. Simultaneously, X. bovienii attacked hemocytes and released toxic components, resulting in extensive hemolysis and sepsis. Then, we applied high-resolution mass spectrometry-based metabolomics and found multiple substances were upregulated in the host hemolymph. We found extremely hazardous actinomycin D produced via 3-hydroxyanthranilic acid metabolites. Moreover, a combined transcriptomic analysis revealed that gene expression of proteins associated with actinomycin D was upregulated. Our research revealed actinomycin D might be responsible for the infestation activity of X. bovienii , indicating a new direction for exploring the sepsis mechanism and developing novel biotic pesticides.

Funder

Natural Science Foundation of Ningxia Province

Key Project of Science and Technology Plan of Yunnan Company of China National Tobacco Corporation

SanYa Institute of China Agricultural University

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3