Bee wisdom: exploring bee control strategies for food microflora by comparing the physicochemical characteristics and microbial composition of beebread

Author:

Wang Ying1ORCID,Ma Lanting1,Xu Baohua1ORCID

Affiliation:

1. College of Animal Science and Technology, Shandong Agricultural University , Tai’an, China

Abstract

ABSTRACT Beebread serves not only as a vital food source for bees but also as a significant reservoir of microbes for their intestinal tracts. The distribution of beebread in honeycomb cells is characterized by distinct vertical patterns; however, the vertical distribution patterns of the physicochemical characteristics and microbial composition of beebread remain unclear. In this study, we collected beebread samples from nine colonies in three representative ecosystems (forest, forest-urban, and urban-farmland ecosystems) and systematically assessed the physicochemical characteristics and bacterial diversity in three beebread layers (lower, middle, and upper). We found that upper beebread samples had lower pH; higher proportions of fructose and sucrose; and lower proportions of total solids, crude protein, and ash compared to lower samples. Moreover, 16S rDNA sequencing showed that the dominant bacterial phyla and genera were relatively simple and highly conserved across the three ecosystems. Overall, the microbial community richness of upper beebread was significantly higher than that of lower beebread, and Bacteroidetes and Acidobacteria were significantly decreased in lower compared to upper beebread. Meanwhile, the relative abundance of dominant taxa in the same beebread layer differed by ecosystem types. These findings suggest that bees employ fermentation processes to selectively enrich microbes present in flower pollen, leading to homogenous and relatively stable microbial diversity in beebread. Our study expands on the current understanding of beebread and highlights the significance of fermentation in its production. Furthermore, our findings provide a useful reference for further in-depth exploration of the interactions between food, food microbes, and bee gut microbes. IMPORTANCE Bees are a valuable model for investigating the relationship between environmental factors, gut microbiota, and organismal health. Beebread, produced from collected pollen, is a natural food source and a primary reservoir of gut microorganisms. Although pollen typically has diverse bacterial species, beebread has low species richness and bacterial abundance. Consequently, considerable attention has been paid to the adaptive strategies employed by honey bees to cope with the microorganisms within their food environment during co-evolution with plants. This study identified the distribution patterns of beebread's physicochemical characteristics, showing how bees use fermentation to enrich specific microbes. These findings help understand the relationship between environmental and food-associated microbes and bee intestinal microbiota. They also bridge gaps in the literature and provide a valuable reference for studying the complex interplay between these factors.

Funder

MOST | National Natural Science Foundation of China

Taishan Industry Leading Talents

MOA | Earmarked Fund for China Agriculture Research System

Natural Science Foundation of Shandong Province

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3