Affiliation:
1. Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
2. Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
Abstract
ABSTRACT
Enterotoxigenic
Escherichia coli
(ETEC) strains that produce various adhesins and one or two enterotoxins are the leading causes of children’s diarrhea and travelers’ diarrhea. MecVax, a multivalent ETEC vaccine candidate, consists of two proteins, an adhesin multiepitope fusion antigen (MEFA) that stimulates antibodies to the seven most important ETEC adhesins (CFA/I and CS1–CS6) and a toxoid fusion antigen which stimulates antibodies against ETEC enterotoxins (heat-labile toxin and heat-stable toxin). CFA MEFA-II, another polyvalent MEFA protein, has been demonstrated to stimulate antibodies to another five important ETEC adhesins (CS7, CS12, CS14, CS17, and CS21). We hypothesize that MecVax coverage and efficacy can be expanded if MecVax could stimulate antibodies to all 12 adhesins. In this study, we supplemented MecVax with CFA MEFA-II, examined broad immunity to the 12 targeted ETEC adhesins and 2 ETEC toxins (STa, LT) in mice, and assessed mouse antibody functions for inhibiting the adherence of the 12 adhesins and neutralizing the enterotoxicity of 2 toxins, thus assessing the potential application of a broadly protective pan-ETEC vaccine. Mice intramuscularly immunized with MecVax and CFA MEFA-II developed robust antibody responses to the 12 ETEC adhesins and 2 toxins; furthermore, mouse serum antibodies showed functional activities against the adherence from each of the targeted adhesins and the enterotoxicity of either toxin. Data also indicated that CFA MEFA-II was antigenically compatible with MecVax. These results demonstrated that the inclusion of CFA MEFA-II further expands MecVax broad immunogenicity and protection coverage, suggesting the feasibility of developing a vaccine against all important diarrheal ETEC strains.
IMPORTANCE
There are no vaccines licensed for Enterotoxigenic
Escherichia coli
(ETEC), a leading cause of children’s diarrhea and the most common cause of travelers’ diarrhea. Since ETEC strains produce over 25 adhesins and 2 distinctive enterotoxins, heterogeneity is a key obstacle to vaccine development. MecVax, a multivalent ETEC vaccine candidate, induces protective antibodies against the seven most important adhesins (CFA/I and CS1–CS6) associated with two-thirds of ETEC clinical cases. However, ETEC prevalence shifts chronically and geographically, and other adhesins are also associated with clinical cases. MecVax would become a pan-ETEC vaccine if it also protects against the remaining important adhesins. This study demonstrated that MecVax supplemented with adhesin protein CFA MEFA-II induces functional antibodies against 12 important ETEC adhesins (CFA/I, CS1–CS7, CS12, CS14, CS17, and CS21), enabling the development of a more broadly protective ETEC vaccine and further validating the application of the MEFA vaccinology platform for multivalent vaccine development.
Funder
HHS | National Institutes of Health
Publisher
American Society for Microbiology