La-related protein 4 is enriched in vaccinia virus factories and is required for efficient viral replication in primary human fibroblasts

Author:

Dhungel Pragyesh1,Brahim Belhaouari Djamal2,Yang Zhilong123ORCID

Affiliation:

1. Division of Biology, Kansas State University , Manhattan, Kansas, USA

2. Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University , College Station, Texas, USA

3. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center , Bryan, Texas, USA

Abstract

ABSTRACT In addition to the 3′-poly(A) tail, vaccinia virus mRNAs synthesized after viral DNA replication (post-replicative mRNAs) possess a 5′-poly(A) leader that confers a translational advantage in virally infected cells. These mRNAs are synthesized in viral factories, the cytoplasmic compartment where vaccinia virus DNA replication, mRNA synthesis, and translation occur. However, a previous study indicates that the poly(A)-binding protein (PABPC1)—which has a well-established role in RNA stability and translation—is absent in the viral factories. This prompts the question of whether other poly(A)-binding proteins engage vaccinia virus post-replicative mRNA in viral factories. Here, in this study, we found that La-related protein 4 (LARP4), a poly(A) binding protein, was enriched in viral factories in multiple types of cells during vaccinia virus infection. Further studies showed that LARP4 enrichment in the viral factories required viral post-replicative gene expression and functional decapping enzymes encoded by vaccinia virus. We further showed that knockdown of LARP4 expression in human foreskin fibroblasts (HFFs) reduced vaccinia virus DNA replication, post-replicative protein levels, and viral production. Interestingly, the knockdown of LARP4 expression also reduced protein levels from transfected mRNA containing a 5′-poly(A) leader in vaccinia virus-infected and uninfected HFFs. Taken together, our results identified a poly(A)-binding protein, LARP4, being enriched in the vaccinia virus viral factories and facilitating viral replication in HFFs. IMPORTANCE Vaccinia virus, the prototype poxvirus, encodes over 200 open reading frames (ORFs). Over 90 of vaccinia virus ORFs are transcribed post-viral DNA replication. All these mRNAs contain a 5′-poly(A) leader, as well as a 3′-poly(A) tail. They are synthesized in viral factories, where vaccinia virus DNA replication, mRNA synthesis, and translation occur. However, surprisingly, the poly(A) binding protein, PABPC1, that is important for mRNA metabolism and translation is not present in the viral factories, suggesting other poly(A) binding protein(s) may be present in viral factories. Here, we found another poly(A)-binding protein, La-related protein 4 (LARP4), enriched in viral factories during vaccinia virus infection. We also showed that LARP4 enrichment in the viral factories depends on viral post-replicative gene expression and functional viral decapping enzymes. The knockdown of LARP4 expression in human foreskin fibroblasts reduced vaccinia virus DNA replication, post-replicative gene expression, and viral production.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Reference33 articles.

1. Damon IK . 2013. Poxviruses, p 2160–2184. In David PMH , M Knipe (ed), Field virology, 6th ed. Wolters Kluwer/Lippincott Williams & Wilkins.

2. Human monkeypox;Foster SO;Bull World Health Organ,1972

3. The changing epidemiology of human monkeypox—A potential threat? A systematic review

4. Monkeypox: A potential global threat?

5. Orthopoxvirus Genome Evolution: The Role of Gene Loss

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3