Association of intestinal bacteria with immune activation in a cohort of healthy adults

Author:

Riazati Niknaz1ORCID,Kable Mary E.23ORCID,Stephensen Charles B.23ORCID

Affiliation:

1. Graduate Group of Molecular, Cellular, and Integrative Physiology, University of California , Davis, California, USA

2. Agricultural Research Service, Western Human Nutrition Research Center, USDA, Immunity and Disease Prevention Unit , Davis, California, USA

3. Department of Nutrition, University of California , Davis, California, USA

Abstract

ABSTRACT Interactions among intestinal bacteria and the immune system contribute to the maintenance of a functional intestinal barrier in healthy individuals, and possibly to systemic immune activity. We hypothesized that intestinal bacteria would be associated with systemic biomarkers of innate and adaptive immune responses in healthy adults. 79 immune function markers were subjected to factor analysis resulting in 17 Immune Factors (IFs), each composed of 2–10 immune variables. Bacterial taxa from stool samples were identified at the family and genus levels by 16S rRNA amplicon sequence analysis and their read counts and relative abundances were utilized in a multiple linear regression model to identify microbial taxa associated with the IFs. A total of 10 significant associations were identified between bacterial taxa and IFs. The family Rikenellaceae showed a positive association with innate IF5 (including 5 chemokines, 2 cytokines, 2 adhesion molecules, and the macrophage metabolite neopterin) and a negative association with adaptive IF4 (including T-cells with activation marker HLA-DR). Additionally, Pseudomonadaceae and its genus Pseudomonas showed a negative relationship with innate IF5, and adaptive IF13 (including T-cell cytokines IL-10, IL-17, and IFN-γ) was negatively associated with Butyrivibrio and positively associated with Slackia . These associations suggest ongoing interactions between gut bacteria and the systemic immune system in healthy adults. The association of these taxa with the IFs may result from specific microbial-immune system interactions that play a role in maintenance of a healthy barrier integrity in our cohort of healthy adults. IMPORTANCE Chronic inflammation may develop over time in healthy adults as a result of a variety of factors, such as poor diet directly affecting the composition of the intestinal microbiome, or by causing obesity, which may also affect the intestinal microbiome. These effects may trigger the activation of an immune response that could eventually lead to an inflammation-related disease, such as colon cancer. Before disease develops it may be possible to identify subclinical inflammation or immune activation attributable to specific intestinal bacteria normally found in the gut that could result in future adverse health impacts. In the present study, we examined a group of healthy men and women across a wide age range with and without obesity to determine which bacteria were associated with particular types of immune activation to identify potential preclinical markers of inflammatory disease risk. Several associations were found that may help develop dietary interventions to lower disease risk.

Funder

USDA | Agricultural Research Service

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3