Determination of minimum inhibitory concentrations using machine-learning-assisted agar dilution

Author:

Gerada Alessandro12ORCID,Harper Nicholas1,Howard Alex12,Reza Nada1ORCID,Hope William12ORCID

Affiliation:

1. Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom

2. Department of Infection and Immunity, Liverpool Clinical Laboratories, Clinical Support Services Building (CSSB), Liverpool University Hospitals NHS Foundation Trust—Royal Liverpool Site, Liverpool, United Kingdom

Abstract

ABSTRACT Effective policy to address the global threat of antimicrobial resistance requires robust antimicrobial susceptibility data. Traditional methods for measuring minimum inhibitory concentration (MIC) are resource intensive, subject to human error, and require considerable infrastructure. AIgarMIC streamlines and standardizes MIC measurement and is especially valuable for large-scale surveillance activities. MICs were measured using agar dilution for n = 10 antibiotics against clinical Enterobacterales isolates ( n = 1,086) obtained from a large tertiary hospital microbiology laboratory. Escherichia coli ( n = 827, 76%) was the most common organism. Photographs of agar plates were divided into smaller images covering one inoculation site. A labeled data set of colony images was created and used to train a convolutional neural network to classify images based on whether a bacterial colony was present (first-step model). If growth was present, a second-step model determined whether colony morphology suggested antimicrobial growth inhibition. The ability of the AI to determine MIC was then compared with standard visual determination. The first-step model classified bacterial growth as present/absent with 94.3% accuracy. The second-step model classified colonies as “inhibited” or “good growth” with 88.6% accuracy. For the determination of MIC, the rate of essential agreement was 98.9% (644/651), with a bias of −7.8%, compared with manual annotation. AIgarMIC uses artificial intelligence to automate endpoint assessments for agar dilution and potentially increases throughput without bespoke equipment. AIgarMIC reduces laboratory barriers to generating high-quality MIC data that can be used for large-scale surveillance programs. IMPORTANCE This research uses modern artificial intelligence and machine-learning approaches to standardize and automate the interpretation of agar dilution minimum inhibitory concentration testing. Artificial intelligence is currently of significant topical interest to researchers and clinicians. In our manuscript, we demonstrate a use-case in the microbiology laboratory and present validation data for the model’s performance against manual interpretation.

Funder

UK Research and Innovation

Wellcome Trust

Publisher

American Society for Microbiology

Reference26 articles.

1. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

2. CLSI. 2023. Performance standards for antimicrobial susceptibility testing. In CLSI supplement M100, 33rd ed. CLSI supplement M100.

3. Current and Emerging Methods of Antibiotic Susceptibility Testing

4. Pfizer. Antimicrobial testing leadership and surveillance (ATLAS). Available from: https://atlas-surveillance.com. Retrieved 30 Aug 2023.

5. Applications of Artificial Intelligence in Clinical Microbiology Diagnostic Testing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3