Biotransformation of protein-rich waste by Yarrowia lipolytica IPS21 to high-value products—amino acid supernatants

Author:

Wieczorek Dorota1,Gendaszewska Dorota1ORCID,Miśkiewicz Katarzyna1,Słubik Anna1,Ławińska Katarzyna1

Affiliation:

1. Łukasiewicz Research Network - Lodz Institute of Technology , Lodz, Poland

Abstract

ABSTRACT The yeast strain Yarrowia lipolytica IPS 21 was tested for its ability to degrade potentially toxic chrome-tanned leather shavings (CTLS) in a liquid environment. Biological and chemical parameters were monitored during a 48-h period of biotransformation of the protein-rich waste. CTLS was added at a concentration of 0.1–4% (wt/wt) to a modified YPG medium (15 g L −1 yeast extract and 5 g L −1 NaCl). Biodegradation and bioconversion were performed in a one-step process. It was found that the higher degradation rate depended on the activity of the proteases and the pH of the medium, but not on the initial inoculum ratio and the activity of the dehydrogenase. The highest efficiency of the process was obtained for 4% (wt/wt) CTLS on day 2 (degradation rate 58–67%, biomass production 2.11–2.20 g L −1 , protease activity 312 U mg −1 protein, and pH 9.20). Our results showed that total chromium was probably not transported across the cytoplasmic membrane of Y. lipolytica IPS21 and that chromium (III) was not oxidized to chromium (VI). The phytotoxicity of selected amino acid supernatants [2.5% (vol/vol)] was tested after the bioconversion process. It was found that the supernatants had a stimulating effect on the plants tested. The root elongation was 29–28% higher than that of the reference samples. This result makes Y. lipolytica IPS21 a potential candidate for safely converting potentially toxic protein-rich wastes into valuable products without enzyme isolation, e.g., amino acid fertilizers. IMPORTANCE Enzyme technologies have the greatest practical relevance to environmental trends. Overcoming the barrier of the high cost of carbon substrates used for biotransformation is the main challenge of these methods. The huge potential of the use of extracellular proteases of Yarrowia species or amino acids in various industries indicates the need for the extension of basic research on waste as a carbon source for this yeast. The experiments demonstrated that it is possible to use Y. lipolytica IPS21 for bioconversion of chrome-tanned leather shavings (CTLS) in a single-step process and to produce high-value amino acid supernatant without having an isolated enzyme. In our study, we show the effect of 2.5% (vol/vol) CTLS supernatant obtained from Y. lipolytica IPS21 on the elongation of the root system of selected plants and provide information on the effect of environmental factors on the efficiency of the bioconversion and the migration of chromium.

Funder

Narodowe Centrum Nauki

MNiSW | Narodowe Centrum Badań i Rozwoju

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3