Identification of environmental Actinobacteria in buildings by means of chemotaxonomy, 16S rRNA sequencing, and MALDI-TOF MS

Author:

Chudzik Anna1ORCID,Jalkanen Kaisa2,Täubel Martin2ORCID,Szponar Bogumiła1ORCID,Paściak Mariola1ORCID

Affiliation:

1. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

2. Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland

Abstract

ABSTRACT Actinobacteria are abundant in soil and other environmental ecosystems and are also an important part of the human microbiota. Hence, they can also be detected in indoor environments and on building materials, where actinobacterial proliferation on damp materials can indicate moisture damage. The aim of this study was to evaluate the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for the identification of 28 environmental strains of Actinobacteria isolated from building materials and indoor and outdoor air samples, mainly collected in the context of moisture damage investigations in buildings in Finland. The 16S rRNA gene sequencing and chemotaxonomic analyses were performed, and results were compared with the MALDI-TOF MS Biotyper identification. Using 16S rRNA gene sequencing, all isolates were identified on the species or genus level and were representatives of Streptomyces, Nocardia, and Pseudonocardia genera. Based on MALDI-TOF MS analysis, initially, 11 isolates were identified as Streptomyces spp. and 1 as Nocardia carnea with a high identification score. After an upgrade in the MALDI-TOF MS in-house database and re-evaluation of mass spectra, 13 additional isolates were identified as Nocardia , Pseudonocardia, and Streptomyces . MALDI-TOF MS has the potential in environmental strain identification; however, the standard database needs to be considerably enriched by environmental Actinobacteria representatives. IMPORTANCE The manuscript addresses the challenges in identifying environmental bacteria using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) Biotyper-based protein profiling. The matter of the studies—actinobacterial strains—has been isolated mostly from building materials that originated from a confirmed moisture-damaged situation. Polyphasic taxonomy, 16S RNA gene sequencing, and MALDI-TOF mass spectrometry were applied for identification purposes. In this experimental paper, a few important facts are highlighted. First, Actinobacteria are abundant in the natural as well as built environment, and their identification on the species and genus levels is difficult and time-consuming. Second, MALDI-TOF MS is an effective tool for identifying bacterial environmental strains, and in parallel, continuous enrichment of the proteomics mass spectral databases is necessary for proper identification. Third, the chemical approach aids in the taxonomical inquiry of Actinobacteria environmental strains.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3