Interaction and assembly of the DNA replication core proteins of Kaposi’s sarcoma-associated herpesvirus

Author:

Chen Lee-Wen12,Wang Shie-Shan23,Chen Li-Yu4,Huang Hsiao-Yun4,He Si-min2,Hung Chien-Hui4,Lin Chun-Liang5,Chang Pey-Jium45ORCID

Affiliation:

1. Department of Respiratory Care, Chang Gung University of Science and Technology , Chiayi, Taiwan

2. Department of Pediatric Surgery, Chang Gung Memorial Hospital , Chiayi, Taiwan

3. School of Medicine, Chang Gung University , Taoyuan, Taiwan

4. Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University , Taoyuan, Taiwan

5. Department of Nephrology, Chang Gung Memorial Hospital , Chiayi, Taiwan

Abstract

ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes six highly conserved core replication proteins essential for the viral lytic DNA synthesis, including ORF6 (single-stranded DNA-binding protein), ORF9 (DNA polymerase), ORF40/41 (primase-associated factor), ORF44 (helicase), ORF56 (primase), and ORF59 (polymerase processivity factor). Since the protein-protein interactions among KSHV core replication proteins are largely unknown, this study aimed to decipher their interrelationships. Herein, we propose a protein-protein interaction network of these six core replication proteins according to the results obtained from confocal fluorescence microscopy, coimmunoprecipitation, and mammalian two-hybrid (GAL4/VP16) reporter assays. In this interaction network, ORF40/41 plays a central role in the connection of different replication subcomplexes. In addition to the well-conserved helicase-primase subcomplex (consisting of ORF44, ORF56, and ORF40/41) and the replisome subcomplex (consisting of ORF9 and ORF59), our data also suggest that several discrete, stable subcomplexes exist in the cell nucleus. Among these replication subcomplexes in the nucleus, the tetrameric subcomplex composed of ORF44, ORF56, ORF40/41, and ORF6 exhibited the ability to trigger a DNA damage response. By using an established GAL4/VP16-based reporter system and confocal fluorescence microscopy, we additionally found that the heat shock protein 90 (Hsp90) inhibitor, radicicol, significantly inhibited the formation of both the helicase-primase subcomplex and the replisome subcomplex in a dose-dependent manner. Collectively, these data not only provide further insights into the interaction and assembly of KSHV-encoded core replication proteins but also suggest a critical role of Hsp90 in assisting the construction of the viral core replication machinery. IMPORTANCE Eukaryotic DNA replication is a highly regulated process that requires multiple replication enzymes assembled onto DNA replication origins. Due to the complexity of the cell’s DNA replication machinery, most of what we know about cellular DNA replication has come from the study of viral systems. Herein, we focus our study on the assembly of the Kaposi’s sarcoma-associated herpesvirus core replication complex and propose a pairwise protein-protein interaction network of six highly conserved viral core replication proteins. A detailed understanding of the interaction and assembly of the viral core replication proteins may provide opportunities to develop new strategies against viral propagation.

Funder

Chang Gung Medical Foundation | Chiayi Chang Gung Memorial Hospital

National Science and Technology Council

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3