Unraveling the role of toxin-antitoxin systems in Burkholderia pseudomallei : exploring bacterial pathogenesis and interactions within the HigBA families

Author:

Chapartegui-González Itziar1ORCID,Stockton Jacob L.1,Bowser Sarah1,Badten Alexander J.12,Torres Alfredo G.13ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA

2. Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA

3. Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA

Abstract

ABSTRACT Burkholderia pseudomallei ( Bpm ) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a “persister” dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei , we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

University of Texas Medical Branch

UTMB | Sealy Institute for Vaccine Sciences, University of Texas Medical Branch

U.S. Department of Agriculture

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3