A new dynamic in vitro model for evaluating antimicrobial activity against bacterial biofilms on central venous catheters

Author:

Fang Liangyan12ORCID,Qiao Yunqian12,Li Xiuting12,Wang Changbin12,Li Chunqiao12,Luan Tongqing12,Wang Wenqing12ORCID

Affiliation:

1. Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, Shandong, China

2. NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan, Shandong, China

Abstract

ABSTRACT Central venous catheters (CVCs) are widely used for intravenous medication administration. However, biofilm formation along the catheter surface is the main most important cause of catheter-related bloodstream infections. Nowadays, several antimicrobial-coated catheters are available to prevent biofilm development. In this study, we introduced a new dynamic in vitro model to evaluate the antimicrobial activity against bacterial biofilms on CVCs. Rifampicin–minocycline-coated catheters and control catheters without antimicrobial component were assembled into the model to test the antimicrobial activity on external surface and internal surface. After 1 h irrigation of Staphylococcus epidermidis or Staphylococcus aureus preculture and 23 h irrigation of Trypticase Soy Broth, the viable adherent organism was collected and counted. The enumeration results showed that the number of bacteria attached to antibacterial catheter was significantly less than that of the control catheter, both on external surface ( P < 0.05) and internal surface ( P < 0.05). The results were further confirmed by the scanning electron microscopy. In conclusion, the dynamic in vitro model can be applied to evaluate the antimicrobial activity against bacterial biofilms grown on the external and internal surfaces of CVCs used in clinical practice. IMPORTANCE For the first time, a new dynamic in vitro model was constructed to evaluate the antimicrobial activity against bacterial biofilms on central venous catheters (CVCs) on both external surface and internal surface. This model could be applied to evaluate the antimicrobial activity against bacterial biofilms not only on CVCs but also other types of catheters.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3