Temporal metagenomic characterization of microbial community structure and nitrogen modification genes within an activated sludge bioreactor system

Author:

Freeman Claire N.12ORCID,Russell Jennifer N.1,Yost Chris K.1ORCID

Affiliation:

1. Department of Biology, University of Regina , Regina, Saskatchewan, Canada

2. Department of Large Animal Clinical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan, Canada

Abstract

ABSTRACT The biological removal of nitrogen using natural microbial metabolic processes can be a valuable component of wastewater treatment that helps reduce downstream eutrophication of receiving water ecosystems. Biological nutrient removal (BNR) is a well-established component of wastewater treatment due to its recognized environmental benefits. The composition and diversity of these microbial communities are an important consideration, as disruptions to or instability in the microbial community can negatively impact N cycling and reduce treatment efficiency. To characterize the bacterial community and associated nitrogen cycling genes within a cold-acclimated BNR facility, metagenomic sequencing combined with a read-based quantification strategy and metagenomic assembled genome (MAG) generation was used on samples collected from a Canadian prairie wastewater treatment plant. Generally, this system had a high abundance of Proteobacteria and Actinobacteria throughout the year, including the genera Thiomonas, Tetrasphaera, Afipia, and Hyphomicrobium . Communities remained stable throughout the different bioreactors in this system, while diversity varied between sampling months, demonstrating seasonal effects on the population dynamics. Genes involved in the denitrification pathway were abundant and distributed widely across different MAGs, while genes involved in nitrification were absent. Additionally, these genes remained stable across all sampling months, suggesting that the efficacy and robustness of this system rely on more than the taxonomic composition of the microbial community. IMPORTANCE Wastewater treatment plays an essential role in minimizing negative impacts on downstream aquatic environments. Microbial communities are known to play a vital role in the wastewater treatment process, particularly in the removal of nitrogen and phosphorus, which can be especially damaging to aquatic ecosystems. There is limited understanding of how these microbial communities may change in response to fluctuating temperatures or how seasonality may impact their ability to participate in the treatment process. The findings of this study indicate that the microbial communities of wastewater are relatively stable both compositionally and functionally across fluctuating temperatures.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3