Creation of the HIV-1 antisense gene asp coincided with the emergence of the pandemic group M and is associated with faster disease progression

Author:

Pavesi Angelo1,Romerio Fabio2ORCID

Affiliation:

1. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

2. Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Abstract

ABSTRACT Despite being first identified more than three decades ago, the antisense gene asp of HIV-1 remains an enigma. asp is present uniquely in pandemic (group M) HIV-1 strains, and it is absent in all non-pandemic (out-of-M) HIV-1 strains and virtually all non-human primate lentiviruses. This suggests that the creation of asp may have contributed to HIV-1 fitness or worldwide spread. It also raises the question of which evolutionary processes were at play in the creation of asp . Here, we show that HIV-1 genomes containing an intact asp gene are associated with faster HIV-1 disease progression. Furthermore, we demonstrate that the creation of a full-length asp gene occurred via the evolution of codon usage in env overlapping asp on the opposite strand. This involved differential use of synonymous codons or conservative amino acid substitution in env that eliminated internal stop codons in asp , and redistribution of synonymous codons in env that minimized the likelihood of new premature stops arising in asp . Nevertheless, the creation of a full-length asp gene reduced the genetic diversity of env . The Luria-Delbruck fluctuation test suggests that the interrupted asp open reading frame (ORF) is the progenitor of the intact ORF, rather than a descendant under random genetic drift. Therefore, the existence of group-M isolates with a truncated asp ORF indicates an incomplete transition process. For the first time, our study links the presence of a full-length asp ORF to faster disease progression, thus warranting further investigation into the cellular processes and molecular mechanisms through which the ASP protein impacts HIV-1 replication, transmission, and pathogenesis. IMPORTANCE Overlapping genes engage in a tug-of-war, constraining each other’s evolution. The creation of a new gene overlapping an existing one comes at an evolutionary cost. Thus, its conservation must be advantageous, or it will be lost, especially if the pre-existing gene is essential for the viability of the virus or cell. We found that the creation and conservation of the HIV-1 antisense gene asp occurred through differential use of synonymous codons or conservative amino acid substitutions within the overlapping gene, env . This process did not involve amino acid changes in ENV that benefited its function, but rather it constrained the evolution of ENV. Nonetheless, the creation of asp brought a net selective advantage to HIV-1 because asp is conserved especially among high-prevalence strains. The association between the presence of an intact asp gene and faster HIV-1 disease progression supports that conclusion and warrants further investigation.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Ministry for University and Research

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3