AHL-differential quorum sensing regulation of amino acid metabolism in Hafnia alvei H4

Author:

Yan Congyang12ORCID,Li Xue12,Zhang Gongliang12,Bi Jingran12,Hao Hongshun2,Hou Hongman12ORCID

Affiliation:

1. School of Food Science and Technology, Dalian Polytechnic University, Dalian, China

2. Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China

Abstract

ABSTRACT Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N -octanoyl- l -homoserine lactone (C8-HSL) downregulated the expression of sdhC / fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM , thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI , promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS. IMPORTANCE As one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3