A type I-F CRISPRi system unveils the novel role of CzcR in modulating multidrug resistance of Pseudomonas aeruginosa

Author:

Chen Shuzhen1,Cao Huiluo2,Xu Zirui1,Huang Jiahui1,Liu Zhiqing1,Li Ting1,Duan Cheng1,Wu Weiyan1,Wen Yongqi1,Zhang Lian-Hui13ORCID,Xu Zeling1ORCID

Affiliation:

1. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou, China

2. Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong, China

3. Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Guangzhou, China

Abstract

ABSTRACT Pseudomonas aeruginosa has abundant signaling systems that exquisitely control its antibiotic resistance in response to different environmental cues. Understanding the regulation of antibiotic resistance will provide important implications for precise antimicrobial interventions. However, efficient genetic tools for functional gene characterizations are sometimes not available, particularly, in clinically isolated strains. Here, we established a type I-F CRISPRi (CSYi) system for programmable gene silencing. By incorporating anti-CRISPR proteins, this system was even applicable to bacterial hosts encoding a native type I-F CRISPR-Cas system. With the newly developed gene-silencing system, we revealed that the response regulator CzcR from the zinc (Zn 2+ )-responsive two-component system CzcS/CzcR is a repressor of efflux pumps MexAB-OprM and MexGHI-OpmD, which inhibits the expression of both operons by directly interacting with their promoters. Repression of MexAB-OprM consequently increases the susceptibility of P. aeruginosa to multiple antibiotics such as levofloxacin and amikacin. Together, this study provided a simple approach to study gene functions, which enabled us to unveil the novel role of CzcR in modulating efflux pump genes and multidrug resistance in P. aeruginosa . IMPORTANCE P. aeruginosa is a ubiquitous opportunistic pathogen frequently causing chronic infections. In addition to being an important model organism for antibiotic-resistant research, this species is also important for understanding and exploiting CRISPR-Cas systems. In this study, we established a gene-silencing system based on the most abundant type I-F CRISPR-Cas system in this species, which can be readily employed to achieve targeted gene repression in multiple bacterial species. Using this gene-silencing system, the physiological role of Zn 2+ and its responsive regulator CzcR in modulating multidrug resistance was unveiled with great convenience. This study not only displayed a new framework to expand the abundant CRISPR-Cas and anti-CRISPR systems for functional gene characterizations but also provided new insights into the regulation of multidrug resistance in P. aeruginosa and important clues for precise anti-pseudomonal therapies.

Funder

Gangdong Basic and Applied Basic Research Foundation

MOST | National Natural Science Foundation of China

Guangzhou Basic and Applied Basic Research Foundation

FHB | Health and Medical Research Fund

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3