Zinc excess impairs Mycobacterium bovis growth through triggering a Zur-IdeR-iron homeostasis signal pathway

Author:

Li Xiaohui1ORCID,Chen Liu2,Wang Yuankun1,Guo Xiao1,He Zheng-Guo1ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University , Nanning, Guangxi, China

2. College of Life Science and Technology, Huazhong Agricultural University , Wuhan, Hubei, China

Abstract

ABSTRACT Zinc excess is toxic to bacteria and, thus, represents an important innate defense mechanism of host cells, especially against mycobacterial infections. However, the signaling pathway triggered by zinc excess and its relationship with iron homeostasis remain poorly understood in mycobacteria. Here, we characterize a novel Zur-IdeR-iron homeostasis signaling pathway that modulates the growth of Mycobacterium bovis under zinc toxicity. We found that the regulator Zur interacts with the iron-homeostasis regulator IdeR, enhancing the DNA-binding ability of IdeR. Excess zinc disrupts this interaction and represses ideR transcription through Zur, which promotes the expression of iron uptake genes and leads to the accumulation of intracellular iron in M. bovis . The elevated iron levels lower the bacterial survival ability under excess zinc stress. Consistently, deleting zur hinders intracellular iron accumulation of M. bovis and enhances bacterial growth under stress, while silencing ideR impairs the growth of the wild-type and zur -deleted strains under the same conditions. Interestingly, both Zur and IdeR are conserved in bacteria facing zinc toxicity. Overall, our work uncovers a novel antimicrobial signal pathway whereby zinc excess disrupts iron homeostasis, which may deepen our understanding of the crosstalk mechanism between iron and zinc homeostasis in bacteria. IMPORTANCE As a catalytic and structural cofactor of proteins, zinc is essential for almost all living organisms. However, zinc excess is toxic and represents a vital innate immunity strategy of macrophages to combat intracellular pathogens, especially against mycobacterial pathogens such as Mycobacterium tuberculosis , the causative agent of tuberculosis. Here, we first characterize an antibacterial signaling pathway of zinc excess and its relationship with iron homeostasis in M. bovis . We found that excess zinc inhibits the transcription of ideR and its DNA-binding activity through Zur, which, in turn, promotes the expression of iron uptake genes, causes intracellular iron accumulation, and finally impairs the bacterial growth. This study reveals the existence of the Zur-IdeR-iron homeostasis pathway triggered by zinc excess in M. bovis , which will shed light on the crosstalk mechanisms between zinc and iron homeostasis in bacteria and the antimicrobial mechanisms of host-mediated zinc toxicity.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

Ba-Gui Scholar Program of Guangxi

China Postdoctoral Science Foundation

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3