Optimization of the STARlet workflow for semi-automatic SARS-CoV-2 screening of swabs and deep respiratory materials using the RealAccurate Quadruplex SARS-CoV-2 PCR kit and Allplex SARS-CoV-2 PCR kit

Author:

Flipse Jacky1ORCID,Tromp Angelino T.1,Thijssen Danique1,van Xanten-Jans-Beken Nicole1,Pauwelsen Roy1,van der Veer Harmen J.23,Schlaghecke Juliëtte M.4,Swanink Caroline M. A.1

Affiliation:

1. Laboratory for Medical Microbiology and Immunology, Rijnstate Hospital, Velp, the Netherlands

2. Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands

3. Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands

4. Research Group Applied Natural Sciences, Fontys University of Applied Sciences, Eindhoven, the Netherlands

Abstract

ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic triggered the implementation of large-scale screenings in the health care and in the general population. Consequently, medical laboratories have to apply lean laboratory management to design workflows that are able to process large batches within short turnaround times while maintaining flexibility to use different SARS-CoV-2 reverse transcription polymerase chain reactions (RT-PCRs) and to be able to process a variety of clinical samples. We validated two SARS-CoV-2 PCR assays on the STARlet workflow: Allplex SARS-CoV-2 PCR kit and RealAccurate Quadruplex SARS-CoV-2 PCR kit. Furthermore, we optimized and validated the STARlet workflow for semi-automatic screening for SARS-CoV-2 in upper respiratory swabs and deep respiratory materials (sputa, bronchoalveolar lavage, and aspirate). Strikingly, guanidine-containing lysis buffers allow for easy processing and can enhance sensitivity of SARS-COV-2 screening since sampling in these buffers may preserve viral transcripts as evident by the higher copy numbers of the SARS-CoV-2 N gene. Moreover, using the principles of lean laboratory management, several bottlenecks that are typical for medical laboratories were addressed. We show that lean laboratory management resulted in significant reduction of the turnaround times of the SARS-CoV-2 PCR in our laboratory. This report thus describes a useful framework for laboratories to implement similar semi-automated workflows. IMPORTANCE The SARS-CoV-2 pandemic triggered the implementation of large-scale screenings in the health care and in the general population. Consequently, medical laboratories had to adapt and evolve workflows that are able to process large batches within short turnaround times while maintaining flexibility to use different assays and to be able to process a variety of clinical samples. We describe how the need for increased outputs and greater flexibility was addressed with respect to clinical samples and assays (Allplex SARS-CoV-2 PCR and RealAccurate Quadruplex SARS-CoV-2 PCR). Strikingly, we found that upper respiratory swabs collected in guanidine-containing lysis buffers both improved the ease of processing as well as enhanced the sensitivity of the SARS-CoV-2 screening. This report thus describes a useful framework for laboratories to implement and optimize similar semi-automated workflows.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3