Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2

Author:

Cui Yanru1,Zhao Dongying1ORCID,Liu Kai1,Mei Xiangui2ORCID,Sun Shanshan1,Du Binghai1ORCID,Ding Yanqin1ORCID

Affiliation:

1. College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University , Tai'an, China

2. State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University , Tai'an, China

Abstract

ABSTRACT Polymyxins exhibit antibacterial activity against various gram-negative bacteria. However, the regulatory mechanisms of polymyxin synthesis remain unclear. Here, Abh, AbrB3, and Spo0A of Paenibacillus polymyxa SC2 were found to bind to P pmx via DNA pull-down and electromagnetic mobility shift assays. Oxford Cup and liquid chromatography-mass spectrometry assays showed that antibacterial activity and polymyxin production increased in the Δ abh strain. Overexpression of abh and abrB3 significantly decreased the antibacterial activity and polymyxin production. The transcription of pmxA determined via quantitative reverse transcription-PCR supported these results. Moreover, the mutation and complementation of spo0A revealed that Spo0A was an activator of polymyxin synthesis. Spo0A could bind to the abh promoter to activate abh expression. Spo0A could bind to the abrB3 promoter to inhibit abrB3 transcription and mitigate the inhibitory effect of AbrB3 on abh transcription. IMPORTANCE Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa . In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa .

Funder

MOST | National Natural Science Foundation of China

shandong provincial Key Research and Development Program(Major Science and Technology Project)-Boost Plan for Rural Vitalization Science and technology innovation

Key Research and Development Program of Liaocheng

Key Research and Development Program of Shandong Province

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3