Expression of the locus of enterocyte effacement genes during the invasion process of the atypical enteropathogenic Escherichia coli 1711-4 strain of serotype O51:H40

Author:

Romão Fabiano T.123,Santos Ana C. M.1ORCID,Puño-Sarmiento Juan J.1,Sperandio Vanessa23ORCID,Hernandes Rodrigo T.4,Gomes Tânia A. T.1ORCID

Affiliation:

1. Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil

2. Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA

3. Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA

4. Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil

Abstract

ABSTRACT Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in low- and middle-income countries. Certain aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. It can also translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of a type III secretion system for the efficiency of the invasion process was demonstrated, the expression of the locus of enterocyte effacement (LEE) genes during the invasion and intracellular persistence remains unclear. To address this question, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro . The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 h post-infection during the persistence period. The number of actin accumulation foci formed on HeLa cells also increased during the 6-h analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that the LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study. IMPORTANCE Atypical enteropathogenic Escherichia coli (aEPEC) is a major cause of diarrhea, especially in low- and middle-income countries, like Brazil. However, due to the genome heterogeneity of each clonal group, it is difficult to comprehend the pathogenicity of this strain fully. Among aEPEC strains, 1711-4 can invade eukaryotic cells in vitro , cross the gut barrier, and reach extraintestinal sites in animal models. By studying how different known aEPEC virulence factors are expressed during the invasion process, we can gain insight into the commonalities of this phenotype among other aEPEC strains. This will help in developing preventive measures to control infections caused by invasive strains. No known virulence-encoding genes linked to the invasion process were found. Nevertheless, additional studies are still necessary to evaluate the role of other factors in this phenotype.

Funder

>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Foundation for the National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3