Iron limitation indirectly reduces the Escherichia coli torCAD operon expression by a reduction of molybdenum cofactor availability

Author:

Hasnat Muhammad Abrar1,Zupok Arkadiusz1,Gorka Michal2,Iobbi-Nivol Chantal3,Skirycz Aleksandra2,Jourlin-Castelli Cécile3ORCID,Bier Frank4,Agarwal Saloni4,Irefo Ehizode1,Leimkühler Silke1ORCID

Affiliation:

1. Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

2. Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany

3. Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France

4. Department of Molecular Bioanalytics and Bioelectronics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

Abstract

ABSTRACT The expression of most molybdoenzymes in Escherichia coli has so far been revealed to be regulated by anaerobiosis and requires the presence of iron, based on the necessity of the transcription factor FNR to bind one [4Fe-4S] cluster. One exception is trimethylamine- N -oxide reductase encoded by the torCAD operon, which has been described to be expressed independently from FNR. In contrast to other alternative anaerobic respiratory systems, the expression of the torCAD operon was shown not to be completely repressed by the presence of dioxygen. To date, the basis for the O 2 -dependent expression of the torCAD operon has been related to the abundance of the transcriptional regulator IscR, which represses the transcription of torS and torT, and is more abundant under aerobic conditions than under anaerobic conditions. In this study, we reinvestigated the regulation of the torCAD operon and its dependence on the presence of iron and identified a novel regulation that depends on the presence of the bis-molybdopterin guanine dinucleotide (bis-MGD) molybdenum cofactor . We confirmed that the torCAD operon is directly regulated by the heme-containing protein TorC and is indirectly regulated by ArcA and by the availability of iron via active FNR and Fur, both regulatory proteins that influence the synthesis of the molybdenum cofactor. Furthermore, we identified a novel regulation mode of torCAD expression that is dependent on cellular levels of bis-MGD and is not used by other bis-MGD-containing enzymes like nitrate reductase. IMPORTANCE In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. FNR is a very important transcription factor that represents the master switch for the expression of target genes in response to anaerobiosis. Only Escherichia coli trimethylamine- N -oxide (TMAO) reductase escapes this regulation by FNR. We identified that the expression of TMAO reductase is regulated by the amount of bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor synthesized by the cell itself, representing a novel regulation pathway for the expression of an operon coding for a molybdoenzyme. Furthermore, TMAO reductase gene expression is indirectly regulated by the presence of iron, which is required for the production of the bis-MGD cofactor in the cell.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3