Affiliation:
1. Department of Biotechnology and Biomedicine, Technical University of Denmark , Kongens Lyngby, Denmark
2. Novo Nordisk Foundation for Biosustainability, Technical University of Denmark , Kongens Lyngby, Denmark
3. Ginkgo Bioworks , Boston, Massachusetts, USA
Abstract
ABSTRACT
Genome-scale metabolic (GEM) models are knowledge bases of the reactions and metabolites of a particular organism. These GEM models allow for the simulation of the metabolism, for example, calculating growth and production yields—based on the stoichiometry, reaction directionality, and uptake rates of the metabolic network. Over the years, several extensions have been added to take into account other actors in metabolism, going beyond pure stoichiometry. One such extension is enzyme-constrained models, which enable the integration of proteomics data into GEM models containing the necessary
k
cat
values for their enzymes. Given its relatively recent formulation, there are still challenges in standardization and data reconciliation between the model and the experimental measurements. In this work, we present geckopy 3.0 (genome-scale model with enzyme constraints, using Kinetics and Omics in Python), an actualization from scratch of the previous Python implementation of the same name. This update tackles the aforementioned challenges, to reach maturity in enzyme-constrained modeling. With the new geckopy, proteins are typed in the Systems Biology Markup Language (SBML) document, taking advantage of the SBML Groups extension, in compliance with community standards. In addition, a suite of relaxation algorithms—in the form of linear and mixed-integer linear programming problems—has been added to facilitate the reconciliation of raw proteomics data with the metabolic model. Several functionalities to integrate experimental data were implemented, including an interface layer with pytfa for the usage of thermodynamics and metabolomics constraints. Finally, the relaxation algorithms were benchmarked against public proteomics data sets in
Escherichia coli
for different conditions, revealing targets for improving the enzyme-constrained model and/or the proteomics pipeline.
IMPORTANCE
The metabolism of biological cells is an intricate network of reactions that interconvert chemical compounds, gathering energy, and using that energy to grow. The static analysis of these metabolic networks can be turned into a computational model that can efficiently output the distribution of fluxes in the network. With the inclusion of enzymes in the network, we can also interpret the role and concentrations of the metabolic proteins. However, the models and the experimental data often clash, resulting in a network that cannot grow. Here, we tackle this situation with a suite of relaxation algorithms in a package called geckopy. Geckopy also integrates with other software to allow for adding thermodynamic and metabolomic constraints. In addition, to ensure that enzyme-constrained models follow the community standards, a format for the proteins is postulated. We hope that the package and algorithms presented here will be useful for the constraint-based modeling community.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献