Conversion of methane to organic acids is a widely found trait among gammaproteobacterial methanotrophs of freshwater lake and pond ecosystems

Author:

Khanongnuch Ramita1ORCID,Mangayil Rahul12,Rissanen Antti Juhani13ORCID

Affiliation:

1. Faculty of Engineering and Natural Sciences, Tampere University , Tampere, Finland

2. Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , Espoo, Finland

3. Natural Resources Institute Finland , Helsinki, Finland

Abstract

ABSTRACT Aerobic gammaproteobacterial methanotrophs (gMOB) are key organisms controlling methane fluxes at the oxic-anoxic interfaces of freshwater ecosystems. Under hypoxic environments, gMOB may shift their aerobic metabolism to fermentation, resulting in the production of extracellular organic acids. We recently isolated a gMOB strain representing the Methylobacter spp. of boreal lake water columns (i.e., Methylobacter sp. S3L5C) and demonstrated that it converts methane to organic acids (acetate, formate, malate, and propionate) under hypoxic conditions. Annotation for putative genes encoding organic acid production within the isolate’s genome and in environmental metagenome-assembled genomes (MAGs) representing Methylobacter spp. suggests that the potential for methane conversion into organic acids is widely found among Methylobacter spp. of freshwater ecosystems. However, it is not known yet whether the capability to convert methane to organic acids is restricted to Methylobacter spp. or ubiquitously present among other freshwater gMOB genera. Therefore, we isolated representatives of two additional gMOB genera from the boreal lake water columns, i.e., Methylomonas paludis S2AM and Methylovulum psychrotolerans S1L, and demonstrated similar bioconversion capacities. These genera could convert methane to organic acids, including acetate, formate, succinate, and malate. Additionally, S2AM produced lactate. Furthermore, we detected genes encoding organic acid production within their genomes and in MAGs representing Methylomonas spp. and Methylovulum spp. of lake and pond ecosystems. Altogether, our results demonstrate that methane conversion to various organic acids is a widely found trait among lake and pond gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs of freshwater lake and pond ecosystems. IMPORTANCE Aerobic gammaproteobacterial methanotrophic bacteria (gMOB) play an important role in reducing methane emissions from freshwater ecosystems. In hypoxic conditions prevalent near oxic-anoxic interfaces, gMOB potentially shift their metabolism to fermentation, resulting in the conversion of methane to extracellular organic acids, which would serve as substrates for non-methanotrophic microbes. We intended to assess the prevalence of fermentation traits among freshwater gMOB. Therefore, we isolated two strains representing relevant freshwater gMOB genera, i.e., Methylovulum and Methylomonas , from boreal lakes, experimentally showed that they convert methane to organic acids and demonstrated via metagenomics that the fermentation potential is widely dispersed among lake and pond representatives of these genera. Combined with our recent study showing coherent results from another relevant freshwater gMOB genus, i.e., Methylobacter , we conclude that the conversion of methane to organic acids is a widely found trait among freshwater gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs.

Funder

Academy of Finland

Koneen Säätiö

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3