Root microbiota analysis of Oryza rufipogon and Oryza sativa reveals an orientation selection during the domestication process

Author:

Jiang Liqun1ORCID,Ke Da1,Sun Bingrui1,Zhang Jing1,Lyu Shuwei1,Yu Hang1,Chen Pingli1,Mao Xingxue1,Liu Qing1,Chen Wenfeng1,Fan Zhilan1,Huang Li2,Yin Sanjun2,Deng Yizhen3ORCID,Li Chen1ORCID

Affiliation:

1. Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, China

2. Healthtimegene Institute, Shenzhen, China

3. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China

Abstract

ABSTRACT The root-associated microbiota has a close relation to the life activities of plants, and its composition is affected by the rhizospheric environment and plant genotypes. Rice ( Oryza sativa ) was domesticated from the ancestor species Oryza rufipogon . Many important agricultural traits and adversity resistance of rice have changed during a long time of natural domestication and artificial selection. However, the influence of rice genotypes on root microbiota in important agricultural traits remains to be explained. In this study, we performed 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing to generate bacterial and fungal community profiles of O. rufipogon and O. sativa , both of which were planted in a farm in Guangzhou and had reached the reproductive stage. We compared their root microbiota in detail by alpha diversity, beta diversity, different species, core microbiota, and correlation analyses. We found that the relative abundance of bacteria was significantly higher in the cultivated rice than in the common wild rice, while the relative abundance of fungi was the opposite. Significant differences in agricultural traits between O. rufipogon and O. sativa showed a high correlation with core microorganisms in the two Oryza species, which only existed in either or had obviously different abundance in both two species, indicating that rice genotype/phenotype had a strong influence on recruiting specific microorganisms. Our study provides a theoretical basis for the in-depth understanding of rice root microbiota and the improvement of rice breeding from the perspective of the interaction between root microorganisms and plants. IMPORTANCE Plant root microorganisms play a vital role not only in plant growth and development but also in responding the biotic and abiotic stresses. Oryza sativa is domesticated from Oryza rufipogon which has many excellent agricultural traits especially containing resistance to biotic and abiotic stresses. To improve the yield and resistance of cultivated rice, it is particularly important to deeply research on differences between O. sativa and O. rufipogon and find beneficial microorganisms to remodel the root microbiome of O. sativa .

Funder

Guangzhou Science Technology and Innovation Commission

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3