Changes in environmental and engineered conditions alter the plasma membrane lipidome of fractured shale bacteria

Author:

Ugwuodo Chika Jude12ORCID,Colosimo Fabrizio3,Adhikari Jishnu4,Bloodsworth Kent5,Wright Stephanie A.5,Eder Josie5,Mouser Paula J.2ORCID

Affiliation:

1. Natural Resources and Earth Systems Science, University of New Hampshire , Durham, New Hampshire, USA

2. Department of Civil and Environmental Engineering, University of New Hampshire , Durham, New Hampshire, USA

3. New England Biolabs , Ipswich, Massachusetts, USA

4. Tetra Tech Inc. , King of Prussia, Pennsylvania, USA

5. Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington, USA

Abstract

ABSTRACT Microorganisms that persist in fractured shale reservoirs cause several problems including secreting foul gases and forming biofilms. Current biocontrol measures often fail due to limited knowledge of their in situ activities. The plasma membrane protects the cell, mediates many of its critical functions, and responds to intracellular cues and ecological perturbations through physicochemical modifications. As such, it provides valuable insight into the physiological adaptation of microorganisms in disturbed environmental systems. Here, we (i) demonstrate how changes in salinity and hydraulic retention time (HRT) influence the plasma membrane intact polar lipid (IPL) chemistry of model bacterium, Halanaerobium congolense WG10, and mixed microbial consortia enriched from shale-produced fluids and (ii) elucidate adjustments in membrane IPL chemistry during biofilm growth relative to planktonic cells. We incubated H. congolense WG10 in chemostats under three salinities (7%, 13%, and 20% NaCl), operated under three HRTs (19.2, 24, and 48 h), and in drip flow biofilm reactors under the same salinity gradients. Also, mixed microbial consortia in produced fluids were enriched in triplicate chemostat vessels under three HRTs (19.2, 24, and 72 h) and biofilm reactors. Lipids were analyzed by ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Our results show that phosphatidylglycerols, cardiolipins, and phosphatidylethanolamines were predominantly enriched in planktonic H. congolense WG10 cells grown at hypersalinity (20%) compared to optimum (13%). In addition, several zwitterionic phosphatidylcholines and phosphatidylethanolamines were higher in abundance during biofilm growth. These observations suggest that microbial adaptation and biofilm formation in fractured shale are enabled by strategic plasma membrane IPL chemistry adjustments. IMPORTANCE Microorganisms inadvertently introduced into the shale reservoir during fracturing face multiple stressors including brine-level salinities and starvation. However, some anaerobic halotolerant bacteria adapt and persist for long periods of time. They produce hydrogen sulfide, which sours the reservoir and corrodes engineering infrastructure. In addition, they form biofilms on rock matrices, which decrease shale permeability and clog fracture networks. These reduce well productivity and increase extraction costs. Under stress, microbes remodel their plasma membrane to optimize its roles in protection and mediating cellular processes such as signaling, transport, and energy metabolism. Hence, by observing changes in the membrane lipidome of model shale bacteria, Halanaerobium congolense WG10, and mixed consortia enriched from produced fluids under varying subsurface conditions and growth modes, we provide insight that advances our knowledge of the fractured shale biosystem. We also offer data-driven recommendations for improving biocontrol efficacy and the efficiency of energy recovery from unconventional formations.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3