Molecular characterization of invasive Streptococcus pneumoniae clinical isolates from a tertiary children’s hospital in eastern China

Author:

Huang Xu1,Tan Hua1,Lu Feng2,Guo Genglin3,Han Mingxiao4,Cai Tongbo5,Zhang Haifang4ORCID

Affiliation:

1. Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University , Nanjing, China

2. School of Mechanical Engineering, Tongji University , Shanghai, China

3. College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China

4. Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University , Suzhou, China

5. College of Computer and Information Engineering, Henan Normal University , Xinxiang, China

Abstract

ABSTRACT Streptococcus pneumoniae is a common opportunistic pathogen that causes invasive pneumococcal disease (IPD), especially in children. This study aimed to determine the prevalence and molecular characteristics of S. pneumoniae isolated from children with IPD. A total of 78 S . pneumoniae isolates from aseptic body fluids of 70 IPD patients were collected at the Children’s Hospital of Nanjing Medical University (Jiangsu Province, China) during 2017–2021. Whole-genome sequencing technology was used to analyze the serotype, sequence type (ST), virulence, and antibiotic resistance of the 78 invasive S. pneumoniae clinical isolates. Our results showed that the pneumococcal infection rate declined after the COVID-19 outbreak in 2019. Serotypes 19F, 14, 6A, 23F, 19A, and 6B were the most common strains. The pneumococcal conjugate vaccine (PCV) 13 serotype coverage rate was 87.1%. All isolates were classified by multi-locus sequence typing (MLST) analysis into 27 different STs, including 3 novel STs (ST17941, ST17942, and ST17944) and 1 novel allele [recP (558)]. The most predominant ST was ST271, followed by ST320 and ST876. All isolates carried the following virulence genes: cbpG, lytB, lytC, pce (cbpE), pavA, slrA, plr (gapA), hysA, nanA, eno, piuA, psaA, cppA, iga, htrA (degP), tig (ropA), zmpB, and ply. All isolates were multidrug resistant and had high levels of resistance to macrolides, tetracyclines, and sulfonamides. Taken together, this study revealed extensive genetic diversity among S. pneumoniae isolates from a single Chinese hospital. Wearing masks, universal infant vaccination with PCV13, and the launch of recombinant protein vaccine development programs could reduce the burden of IPD in children. IMPORTANCE Invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae in children remains a global burden and should be given more attention due to the fact that the pneumococcal vaccine is not fully covered globally. The molecular epidemiological characteristics of S. pneumoniae are not so clear, especially in these years of COVID-19. In this study, we collected S. pneumoniae isolates from the aseptic body fluid of children with IPD from 2017 to 2021 in a tertiary children’s hospital in China and revealed the extensive genetic diversity of these isolates. Most importantly, we first found that the rate of pneumococcal infection has declined since the COVID-19 outbreak in 2019, which means that wearing masks could reduce the transmission of S. pneumoniae . In addition, it was shown that universal infant vaccination with PCV13 seems essential for reducing the burden of IPD in children.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3