QingXiaoWuWei decoction alleviates methicillin-resistant Staphylococcus aureus -induced pneumonia in mice by regulating metabolic remodeling and macrophage gene expression network via the microbiota-short-chain fatty acids axis

Author:

Li Jun1,Zhang Qian1,Li Xue1,Liu Jing1,Wang Fang1,Zhang Wei1,Liu Xingyue2,Li Tiewei3,Wang Shiqi2,Wang Yuqi2,Zhang Xinyu1,Meng Yukun2,Ma Yuheng1ORCID,Wang Huanyun1ORCID

Affiliation:

1. College of Pharmacy, Inner Mongolia Medical University , Hohhot, China

2. First Clinical Medical College, Inner Mongolia Medical University , Hohhot, China

3. Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital , Zhengzhou, China

Abstract

ABSTRACT QingXiaoWuWei decoction (QXWWD) exerts a prominent therapeutic effect on the methicillin-resistant Staphylococcus aureus (MRSA)-induced pneumonia model in mice; however, its pharmacological mechanisms remain unclear. This study aimed to investigate the underlying pharmacological mechanisms of QXWWD in MRSA-induced pneumonia. In the present study, 62 compounds were identified using high-resolution mass spectrometry. Network analysis, leveraging mass spectrometry, pinpointed the infection-linked, immunity-associated, and inflammation-related pathways as predominant targets. QXWWD significantly alleviated MRSA-induced pneumonia in mice and decreased the levels of pro-inflammatory cytokines and chemokines. 16S ribosomal RNA (16S rRNA) sequencing revealed that QXWWD regulated gut microbiota composition in mice with MRSA-induced pneumonia, which correlated with the enrichment of certain short-chain fatty acids (SCFAs)-producing strains. Further analysis with targeted metabolomics confirmed that the acetic, propionic, and butyric acid levels in the mice’s serum were elevated significantly after QXWWD treatment. The fecal microbiota transplantation experiment suggested that gut microbiota from QXWWD-treated mice and SCFAs treatment may alleviate MRSA-induced pneumonia. Additionally, the untargeted metabolomic analysis further demonstrated that metabolic remodeling is significantly regulated by the QXWWD, particularly by the enhancement of the citrate cycle. In the case of QXWWD treatment, global transcriptome profiling revealed that genes, such as NLRP12 and CYP1A1 , associated with macrophage antibacterial and immune activity, were downregulated. The results revealed that QXWWD regulated metabolic remodeling and macrophage gene expression network via the microbiota-SCFAs axis and thus alleviated MRSA-induced pneumonia in mice. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) colonizes the upper respiratory airways and is resistant to antibiotics. MRSA is a frequently acquired infection in hospital and community settings, including cases of MRSA-induced pneumonia. Multidrug-resistant Staphylococcus aureus and the limited efficacy of antibiotics necessitate alternative strategies for preventing or treating the infection. QingXiaoWuWei decoction (QXWWD) protects against both gut microbiota dysbiosis and MRSA-induced pneumonia. Furthermore, the QXWWD-regulated metabolic remodeling and macrophage gene expression network contribute to its protective effects through the microbiota-short-chain fatty acid axis. The results of this study suggest that QXWWD and its pharmacodynamic compounds might have the potential to prevent and treat pulmonary infections, especially those caused by multidrug-resistant organisms. Our study provides a theoretical basis for the future treatment of pulmonary infectious diseases by manipulating gut microbiota and their metabolites via traditional Chinese medicine.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3