Rhizospheric bacteria from the Atacama Desert hyper-arid core: cultured community dynamics and plant growth promotion

Author:

Castro-Severyn Juan12ORCID,Fortt Jonathan1,Sierralta Mariela1,Alegria Paola1,Donoso Gabriel1,Choque Alessandra1,Avellaneda Andrea M.12,Pardo-Esté Coral3ORCID,Saavedra Claudia P.4ORCID,Stoll Alexandra56ORCID,Remonsellez Francisco12ORCID

Affiliation:

1. Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile

2. Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile

3. Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile

4. Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile

5. Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas CEAZA, La Serena, Chile

6. Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, La Serena, Chile

Abstract

ABSTRACT The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata . Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 ( Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus ) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant’s survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications. IMPORTANCE The current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render “unsuitable” soils farmable.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3