Isolation and characterization of Septuagintavirus ; a novel clade of Escherichia coli phages within the subfamily Vequintavirinae

Author:

Cortés-Martín Adrián1ORCID,Buttimer Colin1ORCID,Pozhydaieva Nadiia2,Hille Frank3,Shareefdeen Hiba1,Bolocan Andrei S.1,Draper Lorraine A.1,Shkoporov Andrey N.1,Franz Charles M. A. P.3,Höfer Katharina24,Ross R. Paul1ORCID,Hill Colin15ORCID

Affiliation:

1. APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland

2. Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany

3. Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany

4. Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany

5. School of Microbiology, University College Cork, Cork, Ireland

Abstract

ABSTRACT Escherichia coli is a commensal inhabitant of the mammalian gut microbiota, frequently associated with various gastrointestinal diseases. There is increasing interest in comprehending the variety of bacteriophages (phages) that target this bacterium, as such insights could pave the way for their potential use in therapeutic applications. Here, we report the isolation and characterization of four newly identified E. coli infecting tailed phages (W70, A7-1, A5-4, and A73) that were found to constitute a novel genus, Septuagintavirus , within the subfamily Vequintavirinae . Genomes of these phages ranged from 137 kbp to 145 kbp, with a GC content of 41 mol%. They possess a maximum nucleotide similarity of 30% with phages of the closest phylogenetic genus, Certrevirus , while displaying limited homology to other genera of the Vequintavirinae family. Host range analysis showed that these phages have limited activity against a panel of E. coli strains, infecting 6 out of 16 tested isolates, regardless of their phylotype. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was performed on the virion of phage W70, allowing the identification of 28 structural proteins, 19 of which were shared with phages of other genera of Vequintavirinae family. The greatest diversity was identified with proteins forming tail fiber structures, likely indicating the adaptation of virions of each phage genus of this subfamily for the recognition of their target receptor on host cells. The findings of this study provide greater insights into the phages of the subfamily Vequintavirinae , contributing to the pool of knowledge currently known about these phages. IMPORTANCE Escherichia coli is a well-known bacterium that inhabits diverse ecological niches, including the mammalian gut microbiota. Certain strains are associated with gastrointestinal diseases, and there is a growing interest in using bacteriophages, viruses that infect bacteria, to combat bacterial infections. Here, we describe the isolation and characterization of four novel E. coli bacteriophages that constitute a new genus, Septuagintavirus , within the subfamily Vequintavirinae . We conducted mass spectrometry on virions of a representative phage of this novel clade and compared it to other phages within the subfamily. Our analysis shows that virion structure is highly conserved among all phages, except for proteins related to tail fiber structures implicated in the host range. These findings provide greater insights into the phages of the subfamily Vequintavirinae , contributing to the existing pool of knowledge about these phages.

Funder

Science Foundation Ireland

Janssen Biotech Inc.

Max Planck Society and the German Research Caouncil

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3