Examining homoacetogens in feces from adult and juvenile kangaroos with the aim of finding competitive strains to hydrogenotrophic methanogens

Author:

Stefanini Renan12ORCID,Karekar Supriya12,Ale Enriquez Fuad13ORCID,Ahring Birgitte123ORCID

Affiliation:

1. Bioproducts, Sciences and Engineering Laboratory, Washington State University, Richland, Washington, USA

2. Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA

3. The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA

Abstract

ABSTRACT We examined the microbial populations present in fecal samples of macropods capable of utilizing a mixture of hydrogen and carbon dioxide (70:30) percent. The feces samples were cultured under anaerobic conditions, and production of methane or acetic acids characteristic for methanogenesis and homoacetogenesis was measured. While the feces of adult macropods mainly produced methane from the substrate, the sample from a 2-month-old juvenile kangaroo only produced acetic acid and no methane. The stable highly enriched culture of the joey kangaroo was sequenced to examine the V3 and V4 regions of the 16S rRNA gene. The results showed that over 70% of gene copies belonged to the Clostridia class, with Paraclostridium and Blautia as the most predominant genera. The culture further showed the presence of Actinomyces spp., a genus which has only been identified in the GI tract of macropods in a few studies, and where none, to our knowledge, have been classified as homoacetogenic. The joey kangaroo mixed culture showed a doubling time of 3.54 h and a specific growth rate of 0.199/h, faster than what has been observed for homoacetogenic bacteria in general. IMPORTANCE Enteric methane emissions from cattle are a significant contributor to greenhouse gas emissions worldwide. Methane emissions not only contribute to climate change but also represent a loss of energy from the animal's diet. However, methanogens play an important role as hydrogen sink to rumen systems; without it, the performance of hydrolytic organisms diminishes. Therefore, effective strategies of methanogen inhibition would be enhanced in conjunction with the addition of alternative hydrogen sinks to the rumen. The significance of our research is to identify homoacetogens present in the GI tract of kangaroos and to present their performance in vitro , demonstrating their capability to serve as alternatives to rumen methanogens.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3