Involvement of Tn3 transposon in formation and transmission of hypervirulent and carbapenem-resistant Klebsiella pneumoniae

Author:

Tian Dongxing12ORCID,Zhao Mingqi3,Zheng Sasa4,Jiang Xiaofei5ORCID,Zhang Bin1ORCID

Affiliation:

1. Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University , Jining, Shandong Province, China

2. Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine , Jinan, Shandong Province, China

3. Affiliated Hospital of Jining Medical University , Jining, Shandong Province, China

4. Department of Oncology, Affiliated Hospital of Jining Medical University , Jining, Shandong Province, China

5. Department of Clinical Laboratory, Huashan Hospital, Fudan University , Shanghai, China

Abstract

ABSTRACT Hypervirulent and carbapenem-resistant Klebsiella pneumoniae poses a severe threat to public health for its high pathogenicity, transmissibility, and drug resistance. This study aims to explore the evolutionary path and the role of Tn3 transposon in the virulence and carbapenem resistance transmission of K. pneumoniae . Bioinformatics analysis and some experimental tests such as plasmid conjugation experiments, antimicrobial susceptibility testing, and virulence-associated tests were performed to explore the virulence and drug resistance transmission. The complete genome sequencing, S1 nuclease pulsed-field gel electrophoresis, and bioinformatics analysis were used to investigate their transmission mechanism mediated by Tn3 transposons. Three hypervirulent and carbapenem-resistant K. pneumoniae isolates, which were obtained from different patients at different time points in the same ward, harbored a virulence plasmid and a carbapenem resistance plasmid. They were confirmed to have first evolved from hypervirulent isolates and then acquired a bla KPC -positive plasmid (CR-hvKp evolutionary pattern). The non-conjugative virulence plasmid pVir could be transferred to other bacterial strains via mobilization by the conjugative IncN/U-type plasmid pKPC, as well as by fusing with the conjugative pKPC plasmid (mediated by Tn3-based homologous recombination) to be self-transmissible, thus transferring drug resistance and virulence. The cointegration, pVir/KPC fusion plasmid, was further resolved into pVir and pKPC between the duplicated copies of the Tn3 transposon resolution site mediated by site-specific recombination. Therefore, Tn3 transposons can mediate hypervirulent and carbapenem-resistant K. pneumoniae strains transferring drug resistance and virulence to other bacteria. We must be vigilant to emerging transposon-mediated hypervirulent and carbapenem-resistant pathogens. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is resistant to most common antibiotics, becoming the most important and prevalent nosocomial opportunity pathogen. Besides, K. pneumoniae can also cause severe community-acquired infections, such as primary liver abscess and endophthalmitis. These pathogens are commonly referred to as hvKp. CRKP and hvKp have evolved separately, each occupying its own clonal lineage and exhibiting a variety of properties. Our study provides important insights into the evolutionary events related to the arousal of virulence and drug resistance in K. pneumoniae through plasmid transmission, mediated by Tn3 transposon. Our study also provides evidence that multiple mechanisms contribute to the successful transfer of non-conjugative virulence plasmid, and the involvement of transposons enhances the efficiency. A good knowledge of its transmission mechanisms is fundamental to finding effective strategies to combat these threatening pathogens. Transposons are widely present in bacteria, spreading resistance and virulence genes between the environment and humans. Therefore, emerging transposon-mediated hypervirulent and carbapenem-resistant pathogens should be highly valued.

Funder

China Postdoctoral Science Foundation

Shandong Postdoctoral Innovation Talents Support Program

Shandong Provincial Natural Science Foundation

Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program

Tai Shan Young Scholar Foundation of Shandong Province

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3