L-Serine enables reducing the virulence of Acinetobacter baumannii and modulating the SIRT1 pathway to eliminate the pathogen

Author:

Zhou Jianxia1,Feng Dingyun1,Li Xia1,Chen Yuetao2,Zhang Min1,Wu Wenbin1,Zhu Jiaxin1,Li Hui2ORCID,Peng Xuanxian2ORCID,Zhang Tiantuo1ORCID

Affiliation:

1. Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, People's Republic of China

2. School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China

Abstract

ABSTRACT The emergence of high-virulent Acinetobacter baumannii strains increases the mortality of patients and seriously affects their prognosis, which motivates us to explore novel ways to control such infections. In this study, gas chromatography–mass spectrometry was adopted to explore the metabolic difference between high- and low-virulent A. baumannii strains, and the decreased L-serine levels were identified as the most crucial biomarker in low-virulent A. baumannii strains. In vitro , L-serine reduced the virulence of A. baumannii to Beas 2B cells and inhibited the activation of NLRP3 inflammasome via decreasing the generation of ROS and mtROS and the release of inflammatory cytokines (IL-18 and IL-1β) through upregulating SIRT1. In vivo , the Galleria mellonella model was adopted. L-serine downregulated the levels of virulence genes ( ompA , carO , and omp 33-36), reduced the mortality of A. baumannii to G. mellonella , and decreased the blacking speed as well as the degree of G. mellonella after infection. Taken together, we found that L-serine can reduce the virulence of A. baumannii and enhance the host’s defense against the pathogen, providing a novel strategy for the treatment of infections caused by A. baumannii . IMPORTANCE Acinetobacter baumannii has become one of the most common and severe opportunistic pathogens in hospitals. The high-virulent A. baumannii strains pose a great threat to patients and increase the risk of nosocomial infection. However, the mechanism of virulence in A. baumannii is still not well understood. In the present study, we identified potential biomarkers in low-virulent A. baumannii strains. Our analysis revealed the effect of L-serine on reducing the virulence of A.baumannii . This discovery suggests that targeting L-serine could be a promising strategy for the treatment or adjunctive treatment of A. baumannii infections. The development of treatments targeting virulence may provide a substitute for the increasingly failed traditional antibacterial treatment.

Funder

MOST | National Natural Science Foundation of China

GDSTC | Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3