Different lanthanide elements induce strong gene expression changes in a lanthanide-accumulating methylotroph

Author:

Gorniak Linda1,Bechwar Julia1,Westermann Martin2,Steiniger Frank2,Wegner Carl-Eric1ORCID

Affiliation:

1. Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University , Jena, Germany

2. Electron Microscopy Center, Jena University Hospital , Jena, Germany

Abstract

ABSTRACT Lanthanides (Ln) are the most recently described life metals and are central to methylotrophy (type of metabolism in which organic substrates without carbon-carbon bonds serve as carbon and energy source) in diverse taxa. We recently characterized a novel, Ln-dependent, and Ln-accumulating methylotroph, Beijerinckiaceae bacterium RH AL1, which requires lighter Ln (La, Ce, Nd) for methanol oxidation. Starting from two sets of incubations, one with different La concentrations (50 nM and 1 µM) and one with different Ln elements [La, Nd, or an Ln cocktail (containing Ce, Nd, Dy, Ho, Er, Yb)], we could show that La concentration and different Ln elements strongly affect gene expression and intracellular Ln accumulation. Differential gene expression analysis revealed that up to 41% of the encoded genes were differentially expressed. The effects of La concentration and Ln elements were not limited to Ln-dependent methanol oxidation but reached into many aspects of metabolism. We observed that Ln influence the flagellar and chemotactic machinery and that they affect polyhydroxyalkanoate biosynthesis. The most differentially expressed genes included lanM , coding for the well-characterized lanthanide-binding protein lanmodulin, and a glucose dehydrogenase gene linked to the conversion of β-D-glucose to D-glucono-1,5-lactone, a known potential metal chelator. Electron microscopy, together with RNAseq, suggested that Beijerinckiaceae bacterium RH AL1 can discriminate between Ln elements and that they are differently taken up and accumulated. The discrimination of Ln and links between Ln and various aspects of metabolism underline a broader physiological role for Ln in Beijerinckiaceae bacterium RH AL1. IMPORTANCE Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Reference95 articles.

1. Rare earths in the energy transition: what threats are there for the “vitamins of modern society”? IFPEN. Available from: https://www.ifpenergiesnouvelles.com/article/les-terres-rares-transition-energetique-quelles-menaces-les-vitamines-lere-moderne. Retrieved 22 Aug 2022.

2. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

3. Apatite Replacement and Rare Earth Mobilization, Fractionation, and Fixation During Weathering

4. Solubility products of the trivalent rare-earth phosphates

5. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3