The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus

Author:

Loi Vu Van1,Busche Tobias2,Schnaufer Franziska1,Kalinowski Jörn2,Antelmann Haike1ORCID

Affiliation:

1. Institute of Biology-Microbiology, Freie Universität Berlin , Berlin, Germany

2. Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University , Bielefeld, Germany

Abstract

ABSTRACT During infections, Staphylococcus aureus is exposed to hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN), which are produced by the neutrophil myeloperoxidase as potent antimicrobial killing agents. In this work, we applied RNAseq transcriptomics, Brx-roGFP2 biosensor measurements, and phenotype analyses to investigate the stress responses and defense mechanisms of S. aureus COL toward HOSCN stress. Based on the RNAseq transcriptome profile, HOSCN exerts strong thiol-specific oxidative, electrophile, and metal stress responses as well as protein damage in S. aureus , which is indicated by the strong induction of the HypR, TetR1, PerR, QsrR, MhqR, CstR, CsoR, CzrA, AgrA, HrcA, and CtsR regulons. Phenotype analyses of various mutants in HOSCN-responsive genes revealed that the HOSCN reductase MerA conferred the highest resistance toward HOSCN stress in S. aureus COL, whereas the QsrR and MhqR electrophile stress regulons do not contribute to protection. Brx-roGFP2 biosensor measurements and bacillithiol (BSH)-specific Western blot analyses revealed a strong oxidative shift of the bacillithiol redox potential ( E BSH ) and increased S -bacillithiolations in S. aureus , indicating that BSH is oxidized to bacillithiol disulfide (BSSB) under HOSCN stress. While the Δ merA mutant was delayed in recovery of the reduced E BSH , overproduction of MerA in the Δ hypR mutant enabled faster recovery of E BSH due to efficient HOSCN detoxification. Moreover, both MerA and BSH were shown to contribute to HOSCN resistance in growth assays. In summary, HOSCN provokes a thiol-specific oxidative, electrophile, and metal stress response, an oxidative shift in E BSH and increased S -bacillithiolation in S. aureus . IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3