Affiliation:
1. College of Agronomy, Liaocheng University, Liaocheng, Shandong, China
2. College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
Abstract
ABSTRACT
Equid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)β/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)–protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.
IMPORTANCE
EqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication
in vitro
and
in vivo
. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.
Funder
MOST | National Natural Science Foundation of China
山东省科学技术厅 | Natural Science Foundation of Shandong Province
The Project of Shandong Province Higher Educational Science and Technology Program for Youth
Publisher
American Society for Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献