Automatic patient-level recognition of four Plasmodium species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation

Author:

Guemas Emilie12ORCID,Routier Baptiste3,Ghelfenstein-Ferreira Théo4,Cordier Camille5,Hartuis Sophie6,Marion Bénédicte78,Bertout Sébastien9,Varlet-Marie Emmanuelle78,Costa Damien3,Pasquier Grégoire8ORCID

Affiliation:

1. Department of Parasitology and Mycology, Academic Hospital (CHU) of Toulouse, Toulouse, France

2. Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France

3. Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University Hospital of Rouen, University of Rouen Normandie, Normandie, France

4. Université de Paris Cité, Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France

5. Laboratory of Parasitology-Mycology, INSERM U1285, Unité de Glycobiologie Structurale et Fonctionnelle (CNRS UMR 8576), University Hospital (CHU) of Lille, University of Lille, Lille, France

6. Nantes University,Academic Hospital (CHU) of Nantes,Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR1155, Nantes, France

7. Department of Physical Chemistry and Biophysics, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France

8. Department of Parasitology/Mycology, Academic Hospital (CHU) of Montpellier, University of Montpellier, National Reference Centre (CNR) for Paludism, Montpellier, France

9. Laboratory of Parasitology/Mycology, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, Montpellier, France

Abstract

ABSTRACT Malaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate Plasmodium species on thin blood smear images. The algorithm was trained and validated on a data set consisting in 24,720 images from 475 thin blood smears corresponding to 2,002,597 labels. Performances were calculated with a test data set of 4,508 images from 170 smears corresponding to 358,825 labels coming from six French university hospitals. At the patient level, the RT-DETR algorithm exhibited an overall accuracy of 79.4% (135/170) with a recall of 74% (40/54) and 81.9% (95/116) for negative and positive smears, respectively. Among Plasmodium- positive smears, the global accuracy was 82.7% (91/110) with a recall of 90% (38/42), 81.8% (18/22), and 76.1% (35/46) for P. falciparum , P. malariae, and P. ovale/vivax, respectively. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices such as a smartphone and could be suitable for deployment in low-resource setting areas lacking microscopy experts. IMPORTANCE Malaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate Plasmodium species on thin blood smear images. Performances were calculated with a test data set of 4,508 images from 170 smears coming from six French university hospitals. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices and could be suitable for deployment in low-resource setting areas.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3