A series of pyrimidine-based antifungals with anti-mold activity disrupt ER function in Aspergillus fumigatus

Author:

Kelty Martin T.1,Miron-Ocampo Aracely1,Beattie Sarah R.1ORCID

Affiliation:

1. Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA

Abstract

ABSTRACT Fungal infections are a major contributor to morbidity and mortality among immunocompromised populations. Moreover, fungal disease caused by molds are difficult to treat and are associated with particularly high mortality. To address the need for new mold-active antifungal drugs, we performed a high-throughput screen with Aspergillus fumigatus , the most common pathogenic mold. We identified a novel, pyrimidine-based chemical scaffold with broad-spectrum antifungal activity including activity against several difficult-to-treat molds. A chemical genetics screen of Saccharomyces cerevisiae suggested that this compound may target the endoplasmic reticulum (ER) and perturb ER function and/or homeostasis. Consistent with this model, this compound induces the unfolded protein response and inhibits secretion of A. fumigatus collagenases. Initial cytotoxicity and pharmacokinetic studies show favorable features including limited mammalian cell toxicity and bioavailability in vivo . Together, these data support the further medicinal chemistry and pre-clinical development of this pyrimidine scaffold toward more effective treatments for life-threatening invasive mold infections. IMPORTANCE Invasive fungal diseases are life-threatening infections caused by fungi in immunocompromised individuals. Currently, there are only three major classes of antifungal drugs available to treat fungal infections; however, these options are becoming even more limited with the global emergence of antifungal drug resistance. To address the need for new antifungal therapies, we performed a screen of chemical compounds and identified a novel molecule with antifungal activity. Initial characterization of this compound shows drug-like features and broad-spectrum activity against medically important fungi. Together, our results support the continued development of this compound as a potential future therapy for these devastating fungal infections.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3