Development of an inducer-free, virulence gene promoter-controlled, and fluorescent reporter-labeled CRISPR interference system in Staphylococcus aureus

Author:

Miah Roni1ORCID,Johannessen Mona1ORCID,Kjos Morten2ORCID,Lentz Christian S.1ORCID

Affiliation:

1. Department of Medical Biology and Center for New Antibacterial Strategies (CANS), UT- The Arctic University of Norway, Tromsø, Norway

2. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway

Abstract

ABSTRACT The dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi) gene regulation technique requires two components: a catalytically inactive Cas9 protein (dCas9) and a single-guide RNA that targets the gene of interest. This system is commonly activated by expressing dCas9 through an inducible gene promoter, but these inducers may affect cellular physiology, and accessibility and permeability of the inducer are limited in relevant model systems. Here, we have developed an alternative approach for CRISPRi activation in the clinical isolate Staphylococcus aureus USA300 LAC, where dCas9 was expressed through endogenous virulence gene promoters (vgp); coagulase, autolysin, or fibronectin-binding protein A. Additionally, we integrated a fluorescent reporter gene into the vgp-CRISPRi system to monitor the activity of the dcas9 -controlling promoter. Testing the efficacy of vgp-CRISPRi by inducing growth arrest (when targeting penicillin-binding protein 1), downregulating target gene expression, or blocking coagulase-dependent coagulation of blood plasma, we provide a proof-of-concept demonstration that the virulence gene promoter-driven CRISPRi system is functional in S. aureus . IMPORTANCE The presented inducer-free, endogenous virulence gene promoter-induced, dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi system addresses several shortcomings related to the use of inducer-dependent systems such as effects on cell physiology or limitations in permeability, and it avoids the high, putatively toxic levels of dCas9 in CRISPRi systems controlled by strong, constitutive promoters.

Funder

Joint Programming Initiative on Antimicrobial Resistance

Centre for New Antibacterial Strategies

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3