Hepatitis B surface antigen impairs TLR4 signaling by upregulating A20 expression in monocytes

Author:

Wang Cong1ORCID,Huang Chenlu2,Li Yaming3,Bai Jinjin2,Zhao Kuangjie3,Fang Zhong2ORCID,Chen Jieliang3ORCID

Affiliation:

1. Shanghai Public Health Clinical Center, Fudan University, Shanghai, China

2. Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China

3. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection(CAMS, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China

Abstract

ABSTRACT Toll-like receptors (TLRs) play a crucial role in eliminating viral infection. Conversely, viruses have evolved various strategies to disrupt TLR signaling during chronic infection. In the case of hepatitis B virus (HBV), we previously reported that plasma hepatitis B surface antigen (HBsAg) is closely associated with impaired TLR responses in peripheral blood mononuclear cells from chronic hepatitis B (CHB) patients, but the reasons remain unclear. In this study, we investigated the mechanism by which HBsAg suppresses TLR4 signaling in monocyte cell lines. The monocyte cell line THP-1 was pretreated with HBsAg, followed by lipopolysaccharide (LPS) stimulation. Levels of proinflammatory cytokines and the activation of NF-κB, c-JNK, and ERK were examined. We found that HBsAg did not influence the LPS-induced activation of p65, but it disrupted NF-κB promoter activity through the ectopic expression of myeloid differentiation factor 88 (MyD88) and TAK1, suggesting that HBsAg can block downstream TLR4 signaling. Furthermore, we proved that LPS-induced polyubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) and the formation of the TRAF6-TAB2 complex were inhibited in HBsAg-pretreated cells. Interestingly, HBsAg led to a significant upregulation of A20, a ubiquitin-editing enzyme. Correspondingly, downregulation of A20 using siRNA restored LPS-mediated cytokines production, reflecting its crucial role in HBsAg-mediated inhibition of TLR4 signaling. These results demonstrated a novel mechanism by which HBsAg disrupts TLR4 signaling through the upregulation of A20, suggesting that targeting A20 may be a potential strategy to help restore monocyte functions. IMPORTANCE Clearance HBsAg indicates a functional cure of HBV infection, but in chronic hepatitis B (CHB), it is hard to achieve. HBsAg has been found to regulate anti-viral immune responses, such as the activation of TLR. Our previous jobs proved that HBsAg negatively correlates with TLR2/4 activation in monocytes from CHB patients and blocks TLR2 ligand-indcuced IL-12 production in monocytes. However, how TLR4 signaling is affected by HBsAg remains unknown. In this study, we not only observed impaired TLR4 activation after pretreated monocytes with HBsAg but also identified HBsAg-induced A20 play a role in this impairment, which suggests that targeting A20 may be a viable strategy to restore monocyte functions in CHB.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3