Affiliation:
1. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, China
2. National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention , Beijing, China
3. School of Public Health, Peking University , Beijing, China
Abstract
ABSTRACT
Multidrug-resistant tuberculosis (MDR-TB) has a severe impact on public health. To investigate the drug-resistant profile, compensatory mutations and genetic variations among MDR-TB isolates, a total of 546 MDR-TB isolates from China underwent drug-susceptibility testing and whole genome sequencing for further analysis. The results showed that our isolates have a high rate of fluoroquinolone resistance (45.60%, 249/546) and a low proportion of conferring resistance to bedaquiline, clofazimine, linezolid, and delamanid. The majority of MDR-TB isolates (77.66%, 424/546) belong to Lineage 2.2.1, followed by Lineage 4.5 (6.41%, 35/546), and the Lineage 2 isolates have a strong association with pre-XDR/XDR-TB (
P
< 0.05) in our study. Epidemic success analysis using time-scaled haplotypic density (THD) showed that clustered isolates outperformed non-clustered isolates. Compensatory mutations happened in
rpoA
,
rpoC,
and non-RRDR of
rpoB
genes, which were found more frequently in clusters and were associated with the increase of THD index, suggesting that increased bacterial fitness was associated with MDR-TB transmission. In addition, the variants in resistance associated genes in MDR isolates are mainly focused on single nucleotide polymorphism mutations, and only a few genes have indel variants, such as
katG
,
ethA
. We also found some genes underwent indel variation correlated with the lineage and sub-lineage of isolates, suggesting the selective evolution of different lineage isolates. Thus, this analysis of the characterization and genetic diversity of MDR isolates would be helpful in developing effective strategies for treatment regimens and tailoring public interventions.
IMPORTANCE
Multidrug-resistant tuberculosis (MDR-TB) is a serious obstacle to tuberculosis prevention and control in China. This study provides insight into the drug-resistant characteristics of MDR combined with phenotypic drug-susceptibility testing and whole genome sequencing. The compensatory mutations and epidemic success analysis were analyzed by time-scaled haplotypic density (THD) method, suggesting clustered isolates and compensatory mutations are associated with MDR-TB transmission. In addition, the insertion and deletion variants happened in some genes, which are associated with the lineage and sub-lineage of isolates, such as the
mpt64
gene. This study offered a valuable reference and increased understanding of MDR-TB in China, which could be crucial for achieving the objective of precision medicine in the prevention and treatment of MDR-TB.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献