Detection of resistance to macrolides and fluoroquinolones in Mycoplasma genitalium by targeted next-generation sequencing

Author:

Chiribau Calin B.1,Schmedes Sarah1,Dong Yibo1,Tarigopula Namratha1,Tekin Omer1,Cannons Andrew2,Roberts Jill2,Haiduven Donna2,Crowe Susanne R.1ORCID

Affiliation:

1. Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, Florida, USA

2. University of South Florida, College of Public Health, Tampa, Florida, USA

Abstract

ABSTRACT Mycoplasma genitalium is fastidious to culture, and its detection in human clinical specimens relies mainly on molecular methods. Phenotypic determination of antibiotic susceptibility for this bacterium is not a timely or feasible option for most clinical laboratories. This study sought to determine whether next-generation sequencing technologies can effectively be employed in determining genetic mutations associated with drug resistance in M. genitalium samples collected in Aptima Hologic tubes and possibly integrating them into viable workflows in public health laboratories. Following analysis by a custom-designed bioinformatics pipeline, at least one mutation/sample has been identified in 94/98 specimens in at least one of seven loci (macrolides: rrl , rplD , rplV ; fluoroquinolones: parC , parE , gyrA , gyrB ) described previously to be connected to antibiotic resistance. This method identified a total of 469 single nucleotide polymorphisms (SNPs) (452 mutations): 134 of 23S rRNA SNPs and 318 amino acid mutations: 114 substitutions and 204 synonymous; the turnaround time (sample to analyzed sequence) was typically 3 days. The assays and workflows described in this work demonstrated that the determination of a drug resistance profile for macrolides and fluoroquinolones of M. genitalium samples by using next-generation sequencing in clinical samples is a feasible approach that can be implemented in clinical laboratories, following thorough and extensive validation studies. IMPORTANCE The mechanisms of drug resistance in Mycoplasma genitalium are complex and involve several genetic loci. The molecular methods for accurately characterizing resistance to fluoroquinolones and macrolides in this organism are often not available or approved for patient use and do not cover all genetic determinants. To this end, we propose a next-generation sequencing-based method with a turnaround time of 3 days that includes the investigation of all drug resistance loci of M. genitalium . Following adaptation, validation, and verification for routine clinical use, assays based on this method may yield molecular results that can be used to guide proper treatment regimens and for surveillance of drug resistance in the general population.

Funder

Florida Department of Health

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3