Genomic diversity and biogeographic distributions of a novel lineage of bacteriophages that infect marine OM43 bacteria

Author:

Yang Mingyu1ORCID,Du Sen1,Zhang Zefeng1,Xia Qian1,Liu He1,Qin Fang1,Wu Zuqing1,Ying Hanqi1,Wu Yin1,Shao Jiabing1,Zhao Yanlin12

Affiliation:

1. Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou, China

2. Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University , Fuzhou, China

Abstract

ABSTRACT The marine methylotrophic OM43 clade is considered an important bacterial group in coastal microbial communities. OM43 bacteria, which are closely related to phytoplankton blooms, have small cell sizes and streamlined genomes. Bacteriophages profoundly shape the evolutionary trajectories, population dynamics, and physiology of microbes. The prevalence and diversity of several phages that infect OM43 bacteria have been reported. In this study, we isolated and sequenced two novel OM43 phages, MEP401 and MEP402. These phages share 90% of their open reading frames (ORFs) and are distinct from other known phage isolates. Furthermore, a total of 99 metagenomic viral genomes (MVGs) closely related to MEP401 and MEP402 were identified. Phylogenomic analyses suggest that MEP401, MEP402, and these identified MVGs belong to a novel subfamily in the family Zobellviridae and that they can be separated into two groups. Group I MVGs show conserved whole-genome synteny with MEP401, while group II MVGs possess the MEP401-type DNA replication module and a distinct type of morphogenesis and packaging module, suggesting that genomic recombination occurred between phages. Most members in these two groups were predicted to infect OM43 bacteria. Metagenomic read-mapping analysis revealed that the phages in these two groups are globally ubiquitous and display distinct biogeographic distributions, with some phages being predominant in cold regions, some exclusively detected in estuarine stations, and others displaying wider distributions. This study expands our knowledge of the diversity and ecology of a novel phage lineage that infects OM43 bacteria by describing their genomic diversity and global distribution patterns. IMPORTANCE OM43 phages that infect marine OM43 bacteria are important for host mortality, community structure, and physiological functions. In this study, two OM43 phages were isolated and characterized. Metagenomic viral genome (MVG) retrieval using these two OM43 phages as baits led to the identification of two phage groups of a new subfamily in the family Zobellviridae . We found that group I MVGs share similar genomic content and arrangement with MEP401 and MEP402, whereas group II MVGs only possess the MEP401-type DNA replication module. Metagenomic mapping analysis suggests that members in these two groups are globally ubiquitous with distinct distribution patterns. This study provides important insights into the genomic diversity and biogeography of the OM43 phages in the global ocean.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3