A genomic survey of Clostridioides difficile isolates from hospitalized patients in Melbourne, Australia

Author:

Larcombe Sarah1,Williams Galain C.1ORCID,Amy Jacob1,Lim Su Chen23ORCID,Riley Thomas V.234ORCID,Muleta Anthony1ORCID,Barugahare Adele A.5,Powell David R.5,Johanesen Priscilla A.1,Cheng Allen C.6,Peleg Anton Y.16ORCID,Lyras Dena1ORCID

Affiliation:

1. Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University , Melbourne, Victoria, Australia

2. School of Medical and Health Sciences, Edith Cowan University , Joondalup, Western Australia, Australia

3. School of Biomedical Sciences, The University of Western Australia , Perth, Western Australia, Australia

4. Medical, Molecular, and Forensic Sciences, Murdoch University , Perth, Western Australia, Australia

5. Monash University , Melbourne, Victoria, Australia

6. Department of Infectious Diseases, Alfred Hospital , Melbourne, Victoria, Australia

Abstract

ABSTRACT There has been a decrease in healthcare-associated Clostridioides difficile infection (CDI) in Australia, coupled with an increase in the genetic diversity of strains isolated in these settings, and an increase in community-associated cases. To explore this changing epidemiology, we studied the genetic relatedness of C. difficile isolated from patients at a major hospital in Melbourne, Australia. Whole-genome sequencing of C. difficile isolates from symptomatic ( n = 61) and asymptomatic ( n = 10) hospital patients was performed. Genomic comparisons were made using single-nucleotide polymorphism (SNP) analysis, ribotyping, and toxin, resistome, and mobilome profiling. C. difficle clade 1 strains were found to be predominant (64/71), with most strains (63/71) encoding both toxins A and B (A+B+). Despite these similarities, only two isolates were genetically related (≤2 SNPs) and a diverse range of ribotypes was detected, with those predominating including ribotypes commonly found in community-associated cases. Five non-toxigenic (A−B−CDT−) clade 1 strains were identified, all in asymptomatic patients. Three clade 4 (A−B+CDT−) and four clade 5 (A+B+CDT+) strains were detected also, with these strains more likely to carry antimicrobial resistance determinants, many of which were associated with mobile genetic elements. Overall, within a single hospital, C. difficile -associated disease was caused by a diverse range of strains, including many strain types associated with community and environmental sources. While strains carried asymptomatically were more likely to be non-toxigenic, toxigenic strains were isolated also from asymptomatic patients, which together suggest the presence of diverse sources of transmission, potentially including asymptomatic patients. IMPORTANCE There has been a decrease in healthcare-associated Clostridioides difficile infection in Australia, but an increase in the genetic diversity of infecting strains, and an increase in community-associated cases. Here, we studied the genetic relatedness of C. difficile isolated from patients at a major hospital in Melbourne, Australia. Diverse ribotypes were detected, including those associated with community and environmental sources. Some types of isolates were more likely to carry antimicrobial resistance determinants, and many of these were associated with mobile genetic elements. These results correlate with those of other recent investigations, supporting the observed increase in genetic diversity and prevalence of community-associated C. difficile , and consequently the importance of sources of transmission other than symptomatic patients. Thus, they reinforce the importance of surveillance for in both hospital and community settings, including asymptomatic carriage, food, animals, and other environmental sources to identify and circumvent important sources of C. difficile transmission.

Funder

Department of Education and Training | Australian Research Council

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3