Evaluation of chlorogenic acid and carnosol for anti-efflux pump and anti-biofilm activities against extensively drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa

Author:

Sheikhy Mohaddeseh1,Karbasizade Vajihe1,Ghanadian Mustafa2,Fazeli Hossein1ORCID

Affiliation:

1. Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2. Department of Pharmacognosy, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

ABSTRACT Efflux pumps and biofilm play significant roles in bacterial antibiotic resistance. This study investigates the potential of chlorogenic acid (CGA) and carnosol (CL), as phenolic and diterpene compounds, respectively, for their inhibitory effects on efflux pumps. Among the 12 multidrug-resistant (MDR) strains of Staphylococcus aureus and Pseudomonas aeruginosa isolated from nosocomial skin infections, eight strains were identified as extensively drug resistant (XDR) using the disc diffusion method. The presence of efflux pumps in MDR strains of S. aureus and P. aeruginosa was screened using carbonyl cyanide-m-chlorophenylhydrazone. Between the 12 MDR strains of S. aureus and P. aeruginosa , 80% (4 out of 5) of the S. aureus strains and 85.7% (6 out of 7) of the P. aeruginosa strains exhibited active efflux pumps associated with gentamicin resistance. The checkerboard assay results, in combination with gentamicin, demonstrated that CGA exhibited a reduction in the minimum inhibitory concentration (MIC) for XDR S. aureus strain. Similarly, CL showed a synergistic effect and reduced the MIC for both XDR strains of S. aureus and P. aeruginosa . Flow cytometry was used to examine efflux pump activity at sub-MIC concentrations of 1/8, 1/4, and 1/2 MIC in comparison to the control. In XDR S. aureus , CGA demonstrated 39%, 70%, and 19% inhibition, while CL exhibited 74%, 73.5%, and 62% suppression. In XDR P. aeruginosa , CL exhibited inhibition rates of 25%, 10%, and 15%. The inhibition of biofilm formation was assessed using the microtiter plate method, resulting in successful inhibition of biofilm formation. Finally, the MTT assay was conducted, and it confirmed minimal cytotoxicity. Given the significant reduction in efflux pump activity and biofilm formation observed with CGA and CL in this study, these compounds can be considered as potential inhibitors of efflux pumps and biofilm formation, offering potential strategies to overcome antimicrobial resistance. IMPORTANCE In summary, CGA and CL demonstrated promising potentiating antimicrobial effects against XDR strains of Staphylococcus aureus and Pseudomonas aeruginosa , suggesting their probably potential as candidates for addressing nosocomial pathogens. They exhibited significant suppression of efflux pump activity, indicating a possible successful inhibition of this mechanism. Moreover, all substances effectively inhibited biofilm formation, while showing minimal cytotoxicity. However, further advancement to clinical trials is needed to evaluate the feasibility of utilizing CGA and CL for reversing bacterial XDR efflux and determining their efficacy against biofilms. These trials will provide valuable insights into the practical applications of these compounds in combating drug-resistant infections.

Funder

Isfahan University of Medical Sciences

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3