Joining the bacterial conversation: increasing the cultivation efficiency of soil bacteria with acyl-homoserine lactones and cAMP

Author:

Lopez Marin Marco A.12ORCID,Strejcek Michal1,Uhlik Ondrej1ORCID

Affiliation:

1. Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology , Prague, Czech Republic

2. Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague , Prague, Czechia

Abstract

ABSTRACT Bacteria need to be isolated in pure culture to gain access to the wide array of interesting functions they conceal. This is challenging because they do not live in isolation but instead in communities where they actively communicate and interact with each other. In this study, we aimed to increase the culturability of soil bacteria using three different signaling molecules: N-(3-oxohexanoyl)-L-homoserine lactone, N-octanoyl-L-homoserine lactone, and 3',5'-cyclic adenosine monophosphate (cAMP). The signals were added individually to soils suspended in PBS buffer to a final concentration of 5 µM. Soil suspensions were agitated for 24 hours, after which they were serially diluted and plated on tenfold-diluted Reasoner’s 2A agar that either contained or did not contain the same signaling molecule used during the extraction step. DNA was isolated from both soil suspensions and grown cultures and, after a high-throughput amplicon sequencing, differences in bacterial abundances and diversity were determined across treatments. To further explain the action of the signaling molecules on the treated soil communities, their metagenomic functions were predicted using the software PICRUSt2. N-octanoyl-L-homoserine lactone was found to increase the diversity observed on solid media, while N-(3-oxohexanoyl)-L-homoserine lactone and cAMP were not. Potentially novel isolates aided by the signaling molecules were affiliated with the genera Pseudomonas and Nocardioides . IMPORTANCE Microorganisms are a repository of interesting metabolites and functions. Therefore, accessing them is an important exercise for advancing not only basic questions about their physiology but also to advance technological applications. In this sense, increasing the culturability of environmental microorganisms remains an important endeavor for modern microbiology. Because microorganisms do not live in isolation in their environments, molecules can be added to the cultivation strategies to “inform them” that they are present in growth-permissive environmental conditions. Signaling molecules such as acyl-homoserine lactones and 3',5'-cyclic adenosine monophosphate belong to the plethora of molecules used by bacteria to communicate with each other in a phenomenon called quorum sensing. Therefore, including quorum sensing molecules can be an incentive for microorganisms, specifically soil bacteria, to increase their numbers on solid media.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Grantová Agentura České Republiky

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3