The ER-Golgi transport of influenza virus through NS1-Sec13 association during virus replication

Author:

Chua Sonja C. J. H.12345,Cui Jianzhou123,Sachaphibulkij Karishma123,Tan Isabelle Siang Ling123,Tan Hui Qing123,Lim Hong Meng123,Engelberg David456,Lim Lina H. K.123ORCID

Affiliation:

1. Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore

2. NUS Immunology Program, Life Sciences Institute, National University of Singapore , Singapore, Singapore

3. NUSMED Immunology Translational Research Programme, National University of Singapore , Singapore, Singapore

4. CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore , Singapore, Singapore

5. Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem , Jerusalem, Israel

6. Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore

Abstract

ABSTRACT Influenza A virus is a respiratory virus that can cause complications such as acute bronchitis and secondary bacterial pneumonia. Drug therapies and vaccines are available against influenza, albeit limited by drug resistance and the non-universal vaccine administration. Hence there is a need for host-targeted therapies against influenza to provide an effective alternative therapeutic target. Sec13 was identified as a novel host interactor of influenza. As Sec13 is a member of the nuclear pore complex and coat protein complex II (COPII) vesicles, localization of both Sec13 and non-structural protein 1 (NS1) in the nucleus, endoplasmic reticulum (ER), COPII vesicles (ER-to-Golgi transport), and Golgi was studied during infection. Sec13 is associated with ER, COPII, and Golgi in infected lung epithelial cells and not the nucleus during PR8 infection. This observation would imply the functional role of Sec13 in the COPII vesicles (ER-to-Golgi transport). Moreover, the colocalization of NS1 and Sec13 were correlated at several time points of infection, indicating the function of Sec13 during influenza infection. Inhibiting the ER-to-Golgi transport and silencing Sec13 decreased viral titers, whereas overexpressing Sec13 increased viral titers. Hence, we propose that the ER-to-Golgi transport is an important pathway of viral replication and viral export, and specifically, Sec13 has a functional role in influenza replication and virulence. IMPORTANCE Influenza A virus is a respiratory virus that can cause complications such as acute bronchitis and secondary bacterial pneumonia. Drug therapies and vaccines are available against influenza, albeit limited by drug resistance and the non-universal vaccine administration. Hence there is a need for host-targeted therapies against influenza to provide an effective alternative therapeutic target. Sec13 was identified as a novel host interactor of influenza. Endoplasmic reticulum-to-Golgi transport is an important pathway of influenza virus replication and viral export. Specifically, Sec13 has a functional role in influenza replication and virulence.

Funder

National Research Foundation Singapore

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3