Transcriptomic and genomic effects of gamma-radiation exposure on strains of the black yeast Exophiala dermatitidis evolved to display increased ionizing radiation resistance

Author:

Yuzon Jennifer D.1,Schultzhaus Zachary2ORCID,Wang Zheng2ORCID

Affiliation:

1. National Research Council Postdoctoral Research Associate, US Naval Research Laboratory , Washington, USA

2. Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory , Washington, USA

Abstract

ABSTRACT Melanized fungi thrive in extreme environments, including those with high levels of ionizing radiation. To understand the role that melanin may play in ionizing radiation resistance, we previously performed an adaptive laboratory evolution experiment in which we used melanized and non-melanized strains of the yeast Exophiala dermatitidis to develop evolved lines that exhibit increased ionizing radiation resistance. In this study, we further characterized these evolved lines by analyzing their response to ionizing radiation at the transcriptomic and genomic levels. RNA sequencing showed that the response to gamma irradiation in both unevolved and evolved strains involved the induction of DNA repair genes. However, in the melanized lines evolved to exhibit increased ionizing radiation resistance, DNA-associated genes were constitutively expressed, compared to their expression levels in wild type. Non-melanized lines that were evolved to be resistant to ionizing radiation, on the other hand, exhibited upregulation of genes involved in redox homeostasis, even under non-irradiated conditions. Additionally, we characterized genome-wide mutations induced by a single high dose of gamma radiation in these evolved lines and observed that while melanin did not directly affect survival after gamma radiation exposure, melanized lines that evolved to exhibit higher ionizing radiation resistance experienced fewer mutations, whereas similarly evolved, non-melanized lines accumulated more mutations, similar to the parent, non-melanized strain. These results underscore the complex yet measurable role of melanin in the response to ionizing radiation in E. dermatitidis . Furthermore, this study enhances our understanding of the mechanisms underlying the recovery after ionizing radiation exposure in melanized fungi and offers insights into the potential therapeutic applications of melanin and other redox molecules for protecting against ionizing radiation-induced damage. IMPORTANCE Ionizing radiation poses a significant threat to living organisms and human health, given its destructive nature and widespread use in fields such as medicine and the potential for nuclear disasters. Melanized fungi exhibit remarkable survival capabilities, enduring doses up to 1,000-fold higher than mammals. Through adaptive laboratory evolution, we validated the protective role of constitutive upregulation of DNA repair genes in the black yeast Exophiala dermatitidis , enhancing survival after radiation exposure. Surprisingly, we found that evolved strains lacking melanin still achieved high levels of radioresistance. Our study unveiled the significance of robust activation and enhancement of redox homeostasis, as evidenced by the profound transcriptional changes and increased accumulation of mutations, in substantially improving ionizing radiation resistance in the absence of melanin. These findings underscore the delicate balance between DNA repair and redox homeostasis for an organism’s ability to endure and recover from radiation exposure.

Funder

DOD | Defense Threat Reduction Agency

Joint Genome Institute

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3