G-quadruplexes of KSHV oriLyt play important roles in promoting lytic DNA replication

Author:

Dabral Prerna12ORCID,Uppal Timsy1ORCID,Verma Subhash C.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine , Reno, Nevada, USA

2. Vitalant Research Institute , San Francisco, California, USA

Abstract

ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) utilizes distinct origins of DNA replication (origin of replications) during the latent and lytic phases of its life cycle. Lytic DNA replication requires the participation of cellular and viral proteins to initiate replication at a specific region in the KSHV genome, oriLyt. These regions contain multiple secondary structures and binding sites for viral and cellular proteins. We discovered the presence of G-quadruplex (G4) sites in the oriLyt region. G-quadruplexes are secondary structures in nucleic acid sequences that are considered regulators of multiple biological processes, such as transcription, translation, and replication initiation. Importantly, herpesviruses have a high density of putative quadruplex sequence or formation sites in their genome, including in the regulatory regions, which control replication and transcription. The binding of RecQ1 to the oriLyt region of KSHV and its ability to unwind the G4 structures led us to speculate that G-quadruplex sites play an important role in lytic DNA replication. In this study, we confirmed the formation of stable G-quadruplexes through biochemical and biophysical assays. We further demonstrated that RecQ1, a helicase, associates with the G-quadruplex forming sites of the oriLyt. The functional significance of G4 sites and RecQ1 was confirmed through the stabilization of G4 and depletion of RecQ1 levels through shRNA. Furthermore, the detection of replication initiation through single-molecule analysis of the replicated DNA demonstrated that G4 stabilization leads to subdued replication initiation at the oriLyt. This confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be used to control virus growth. IMPORTANCE Biological processes originating from the DNA and RNA can be regulated by the secondary structures present in the stretch of nucleic acids, and the G-quadruplexes are shown to regulate transcription, translation, and replication. In this study, we identified the presence of multiple G-quadruplex sites in the region (oriLyt) of Kaposi’s sarcoma-associated herpesvirus (KSHV) DNA, which is essential for DNA replication during the lytic cycle. We demonstrated the roles of these G-quadruplexes through multiple biochemical and biophysical assays in controlling replication and efficient virus production. We demonstrated that KSHV achieves this by recruiting RecQ1 (helicase) at those G-quadruplex sites for efficient viral DNA replication. Analysis of the replicated DNA through nucleoside labeling and immunostaining showed a reduced initiation of DNA replication in cells with a pharmacologic stabilizer of G-quadruplexes. Overall, this study confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be exploited for controlling viral DNA replication.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3