Greenhouses represent an important evolutionary niche for Alternaria alternata

Author:

Yang Guangzhu123,Cui Sai12,Huang Wenjing3,Wang Shutong4,Ma Jun3,Zhang Ying1ORCID,Xu Jianping15ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China

2. College of Life Science, Yunnan University, Kunming, Yunnan, China

3. Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China

4. College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China

5. Department of Biology, McMaster University, Hamilton, Ontario, Canada

Abstract

ABSTRACT Alternaria alternata is a ubiquitous soil-borne fungus capable of causing diseases in a variety of plants and occasionally in humans. While populations of A. alternata from infected plants have received significant attention, relatively little is known about its soil populations, including its population genetic structure and antifungal susceptibilities. In addition, over the last two decades, greenhouses have become increasingly important for food and ornamental plant production throughout the world, but how greenhouses might impact microbial pathogens such as A. alternata populations remains largely unknown. Different from open crop fields, greenhouses are often more intensively cultivated, with each greenhouse being a relatively small and isolated space where temperature and humidity are higher than surrounding environments. Previous studies have shown that greenhouse populations of two common molds, Aspergillus fumigatus and A. alternata, within a small community in southwestern China were variably differentiated. However, the relative contribution of physical separation among local greenhouses to the large-scale population structure remains unknown. Here, we isolated strains of A. alternata from seven greenhouses in Shijiazhuang, northeast China. Their genetic diversity and triazole susceptibilities were analyzed and compared with each other and with 242 isolates from nine greenhouses in Kunming, southwest China. Results showed that the isolation of greenhouses located <1 km from each other locally contributed similarly to the overall genetic variation as that between the two distant geographic regions. In addition, our results indicate that greenhouses could be significant sources of triazole resistance, with greenhouses often differing in their frequencies of resistant strains to different triazoles. IMPORTANCE Greenhouses have become increasingly important for food production and food security. However, our understanding of how greenhouses may contribute to genetic variations in soil microbial populations is very limited. In this study, we obtained and analyzed soil populations of the cosmopolitan fungal pathogen Alternaria alternata in seven greenhouses in Shijiazhuang, northeast China. Our analyses revealed high proportions of isolates being resistant to agricultural triazole fungicides and medical triazole drugs, including cross-resistance to both groups of triazoles. In addition, we found that greenhouse populations of A. alternata located within a few kilometers showed similar levels of genetic differentiation as those separated by over 2,000 km between northeast and southwest China. Our study suggests that greenhouse populations of this and potentially other fungal pathogens represent an important ecological niche and an emerging threat to food security and human health.

Funder

Yunnan Province

MOST | National Natural Science Foundation of China

Major Science and Technology Projects in Yunnan Province

Top young talent program of Yunnan Province

McMaster University

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3