Affiliation:
1. Institute of Human Genetics, CNRS, 34396 Montpellier Cedex 5, France
Abstract
ABSTRACT
Previous observations led to the conclusion that in
Xenopus
eggs and during early development, DNA replication initiates at regular intervals but with no apparent sequence specificity. Conversely, here, we present evidence for site-specific DNA replication origins in
Xenopus
egg extracts. Using λ DNA, we show that DNA replication origins are activated in clusters in regions that contain closely spaced adenine or thymine asymmetric tracks used as preferential initiation sites. In agreement with these data, AT-rich asymmetric sequences added as competitors preferentially recruit origin recognition complexes and inhibit sperm chromatin replication by increasing interorigin spacing. We also show that the assembly of a transcription complex favors origin activity at the corresponding site without necessarily eliminating the other origins. Thus, although
Xenopus
eggs have the ability to replicate any kind of DNA, AT-rich domains or transcription factors favor the selection of DNA replication origins without increasing the overall efficiency of DNA synthesis. These results suggest that asymmetric AT-rich regions might be default elements that favor the selection of a DNA replication origin in a transcriptionally silent complex, whereas other epigenetic elements linked to the organization of domains for transcription may have further evolved over this basal layer of regulation.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献