The Colicin E1 TolC Box: Identification of a Domain Required for Colicin E1 Cytotoxicity and TolC Binding

Author:

Jakes Karen S.1

Affiliation:

1. Albert Einstein College of Medicine, Department of Physiology and Biophysics, Bronx, New York, USA

Abstract

ABSTRACT Colicins are protein toxins made by Escherichia coli to kill related bacteria that compete for scarce resources. All colicins must cross the target cell outer membrane in order to reach their intracellular targets. Normally, the first step in the intoxication process is the tight binding of the colicin to an outer membrane receptor protein via its central receptor-binding domain. It is shown here that for one colicin, E1, that step, although it greatly increases the efficiency of killing, is not absolutely necessary. For colicin E1, the second step, translocation, relies on the outer membrane/transperiplasmic protein TolC. The normal role of TolC in bacteria is as an essential component of a family of tripartite drug and toxin exporters, but for colicin E1, it is essential for its import. Colicin E1 and some N-terminal translocation domain peptides had been shown previously to bind in vitro to TolC and occlude channels made by TolC in planar lipid bilayer membranes. Here, a set of increasingly shorter colicin E1 translocation domain peptides was shown to bind to Escherichia coli in vivo and protect them from subsequent challenge by colicin E1. A segment of only 21 residues, the “TolC box,” was thereby defined; that segment is essential for colicin E1 cytotoxicity and for binding of translocation domain peptides to TolC. IMPORTANCE The Escherichia coli outer membrane/transperiplasmic protein TolC is normally an essential component of the bacterium's tripartite drug and toxin export machinery. The protein toxin colicin E1 instead uses TolC for its import into the cells that it kills, thereby subverting its normal role. Increasingly shorter constructs of the colicin's N-terminal translocation domain were used to define an essential 21-residue segment that is required for both colicin cytotoxicity and for binding of the colicin's translocation domain to bacteria, in order to protect them from subsequent challenge by active colicin E1. Thus, an essential TolC binding sequence of colicin E1 was identified and may ultimately lead to the development of drugs to block the bacterial drug export pathway.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3